PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Studies on Cucumber Production Using Substrate Culture under North Sinai Conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A wide range of soilless cultivation techniques have been developed and introduced for intensive cropping systems and for boosting the crop yield of many vegetables, mainly in greenhouses. Adoption of some local natural by-products to be utilized as a substrate growing medium to overcome soil-related problems appeared to be a promising project. Therefore, greenhouse experiments were conducted at the Baloza Experimental Station of the Desert Research Center (DRC), North Sinai Governorate, Egypt, during the two consecutive winter growing seasons of 2016–2017 and 2017–2018. These experiments aimed to investigate the effects of seven growing substrate culture treatments of separated or mixed sand obtained from sand dunes and date palm tree residues (Karenna) on plant vegetative growth, flowering, fruit yield and quality traits, and fruit nutritional values of cucumber plants (Cucumis sativus L.) Filial-1 hybrid 1101. Crop evapotranspiration reference (ETc) and water use efficiency (WUE), as well as treatment feasibility, were also studied. The experiment was set up in a complete randomized block design with three replicates. The obtained results strongly indicated that growing substrate media containing 25% sand (S) from sand dunes mixed with 75% grinded Karenna (Kg) of date palm (1 S + 3 Kg) significantly recorded the superiority of all studied characters of plant vegetative growth, number of flowers, fruit set, yield and its components, as well as fruit N, P and K contents, compared with other growing substrate medium treatments. On the contrary, the worst values of all studied parameters were achieved when sand was used alone (100% S) as a growing media. Furthermore, the highest water use efficiency and net income values were also attained by the 1 S + 3 Kg media treatment relative to the other growing substrate medium treatments.
Rocznik
Strony
40--53
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
  • Plant Production Department, Ecology and Dry Land Agriculture Division, Desert Research Center (DRC), 11753, El-Matareya, Cairo, Egypt
Bibliografia
  • 1. Abad M., Noguera P., Puchades R., Maquieira A., Noguera V. 2002. Physico-chemical and chemical properties of some coconut dusts for use as a peat substitute for containerized ornamental plants. Bioresour. Technol., 82(3), 241–245.
  • 2. Akanbi W.B., Togun A.O., Adediran T.A., Olabde O.S., Olanivi J.O. 2002. Effect of split application of organomineral fertilizer on okra growth, nutrient uptake and fruit yield. Crop Res., 29(2), 223–239.
  • 3. Al-Mulla Y.A., Al-Balushi M., Al-Rawahy M., Al-Raisy F., Al-Makhmary S. 2008. Screenhouse microclimate effects on cucumber production planted in soilless culture (open system). Acta Hortic., 801, 637–647.
  • 4. Almi K., Lakel S., Benchabane A., Kriker A. 2015. Characterization of date palm wood used as composites reinforcement. Acta Physica Polonica A, 127(4), 1072–1074.
  • 5. Aljawasim B.D., Khaeim H.M., Manshood M.A. 2020. Assessment of arbuscular mycorrhizal fungi (Glomus spp.) as potential biocontrol agents against damping-off disease Rhizoctonia solani on cucumber. J. Crop Prot., 9(1), 141–147.
  • 6. Al-Oqla F.M., Alothman O.Y., Jawaid M., Sapuan S.M., Es-Saheb M.H. 2014. Processing and properties of date palm fibers and its composites. In: Biomass and Bioenergy, Processing and Properties. Hakeem K.R., Jawaid M., Rashid U. (eds.), Springer International Publishing Switzerland, 307.
  • 7. AOAC 1990. Official Methods of Analysis. The Association of Official Analytical Chemists, 15th edition, Benjamin. Frankline Station, Washington, D.C., U.S.A.
  • 8. Asano J.C. 1994. Effect of organic manures on quality of vegetables. J. Agric. Res., 18(1), 31–36.
  • 9. Atiyeh R.M., Edwards C.A., Subler S., Metzger J.D. 2001. Pig manure vermicompost as a component of a horticultural bedding plant medium: effects on physicochemical properties and plant growth. Bioresour. Technol., 78(1), 11–20.
  • 10. Aydi S., Aydi S.S., Rahmani R., Faten Bouaziz, Souchard J.P., Merah O., Abdelly C. 2023. Datepalm compost as soilless substrate improves plant growth, photosynthesis, yield and phytochemical quality of greenhouse melon (Cucumis melo L.). Agronomy, 13, 212.
  • 11. Bacon M.A. 2004. Water use efficiency in plant biology. Department of Biological Sciences, University of Lancaster, Blackwell Publishing, CRC Press, Oxford, UK, 327.
  • 12. Basirat M. 2011. Use of palm waste cellulose as a substitute for common growing media in Aglaonema growing. J. Ornam. Plants, 1(1), 1–11.
  • 13. Brown J.D., Lilliland O. 1964. Rapid determination of potassium and sodium in plant material and soil extracts flow phosphorus. Proc. Amer. Soc. Hort. Sci., 48, 341–346.
  • 14. Duffie J.A., Beckman W.A. 1993. Solar Engineering of Thermal Processes. Handbook of Hydrology, New York, USA.
  • 15. Dhen N., Abed S.B., Zouba A., Haouala F., Al-Mohandes D.B. 2018. The challenge of using date branch waste as a peat substitute in container nursery production of lettuce (Lactuca sativa L.). Int. J. Recycl. Org. Waste Agric., 7(4), 357–364.
  • 16. Economic Affairs Sector, Ministry of Agriculture and Land Reclamation 2021. Bulletin of The Agricultural Statistics, Summer & Nili Corps, Part (2), 346–368.
  • 17. El-Behairy U.A. 1994. The effect of levels of phosphorus and zinc in the nutrient solution on macro and micronutrients uptake and translocation in cucumber (Cucumus sativus L.) grown by the nutrient film technique. Ph.D. thesis, London University, UK.
  • 18. El-Mohamedy R.S.R., Shafeek M.R., Abd El-Samad E.H., Dina M. Salama, Fatma A. Rizk 2017. Field application of plant resistance inducers (PRIs) to control important root rot diseases and improvement growth and yield of green bean (Phaseolus vulgaris L.). Aust. J. Crop Sci., 11(5), 496–505.
  • 19. FAO 1998. Irrigation and Drainage. The Food and Agricultural Organization of The United Nations, Rome, Italy, Paper, 56.
  • 20. FAO 2017. The impact of disasters and crises on agriculture and food security. The Food and Agricultural Organization of The United Nations, Rome, Italy, Report, 168.
  • 21. Frie E., Peyer K., Schultz E. 1964. Determination of phosphorus by ascorbic acid. Schw. Land. Wirt Schaft for shung Heft., 3, 318–328.
  • 22. Ghehsareh A.M., Hematian M., Kalbasi M. 2012. Comparison of date palm wastes and perlite as culture substrates on growing indices in greenhouse cucumber. Int. J. Recycl. Org. Waste Agric., 1(5), 1–4.
  • 23. Gomez K.A., Gomez A.A. 1984. Statistical procedures for agriculture research 2nd Ed., Inter. Science Publisher, John Wiley and Sons, New York, USA.
  • 24. Grimstand S.O. 1990. Evaluation trials of greenhouse cucumbers. Verdiproving av veksthusagurk. Gartneryrket, 80(21), 16–18.
  • 25. Gul A., Tuzel I.H., Tuncay O., Eltez R.Z., Zencirkiran E. 1999. Soilless culture of cucumber in glasshouses: I. A comparison of open and closed systems on growth, yield and quality. Acta Hortic., 491, 389–394.
  • 26. Hargreaves G.L., Hargreaves G.H., Riley J.P. 1985. Irrigation water requirements for Senegal River Basin. J. Irrig. Drain. Eng., 111(3), 265–275.
  • 27. Heidari S., Mortazavi S.N., Reezi S., Nikbakht A. 2021. Composted palm waste as an alternative of coco peat in growing media: effects on growth and nutritional status of Lily cut flower (Lilium spp.). J. Hortic. Postharvest Res., 4, 49–66.
  • 28. Hickman G.W., Klonsky K. 1993. Greenhouse cucumbers- bag culture: cost of production and equipment in San Joaquin Valley, Stockton: University of California, California, USA, 4.
  • 29. Jackson M.E. 1962. Soil Chemical Analysis. Constable Company Ltd., London, UK, 448.
  • 30. Janapriya S., Palanisamy D., Ranghaswami M.V. 2010. Soilless media and fertigation for naturally ventilated polyhouse production of cucumber (Cucumis sativus L.) cv green long. Int. J. Agric. Environ. Biotech., 3, 199–205.
  • 31. Johnson C.M., Ulrich A. 1959. Analytical Methods for Use in Plant Analysis. Calif. Agric. Exp. Stn. Bull, USA, 766.
  • 32. Koodzeij M., Kostecka J. 1994. Some quality characteristics. In cucumber and carrot grown on vermicomposts. ZezytyNaukeme-Akademii-Roluicozej-imHugona-Koataja-w-karkowie, Serja Naakowa, 41, 89–93.
  • 33. Kumari L., Choudhary M.R., Sharma R., Ghormade A.S. 2018. Effect of growing media and fertigation schedules on growth and yield of cucumber (Cucumis sativus L.) under polyhouse condition. Int. J. Curr. Microbiol. App. Sci., 7(12), 1457–1463.
  • 34. Lorenzo P., Sanchez-Guerrero M.C., Medrano E., Perez J., Castilla N. 1999. Soilless cucumber response to mulching in an unheated Mediterranean greenhouse. Acta Hortic., 491, 401–404.
  • 35. Mazahreh N., Nejatian A., Mousa M. 2015. Effect of different growing medias on cucumber production and water productivity in soilless culture under UAE conditions. Merit Res. J. Agric. Sci. Soil Sci., 3(9), 131–138.
  • 36. McIntosh M.S. 1983. Analysis of combined experiments. Agron. J., 75, 153–155.
  • 37. Mirmehdi S.M., Zeinaly F., Dabbagh F. 2014. Date palm wood flour as filler of linear low-density polyethylene. Compos. Part B-Eng., 56, 137–141.
  • 38. Peach K., Tracey M.R. 1955. Modern methods of plant analysis. Springer Verlage, Berlin, Germany, 2, 643.
  • 39. Rahman M.J., Quamruzzaman M., Begum P., Sani M.N.H., Chawdhery M.R.A., Ahmed S., Ali M.M. 2017. Physical and chemical properties of different substrate mixtures and their effects on growth and yield of lettuce. Bangladesh Hort., 3(1), 39–46.
  • 40. Raviv M., Lieth J.H. 2008. Soilless Culture: Theory and practice. 2nd Edition, Elsevier Pub., New York, USA, 245–269.
  • 41. Richards L.A. 1954. Diagnosis and Improvement of Saline and Alkaline Soils. Hand Book, No. 60, U.S. Dept, Agric., Washington, D.C., USA.
  • 42. Rostami Zeinab, Ghahsare A.M., Kavoos B. 2014. Date palm waste application as culture media for strawberry and its impact on some growth indices and yield components. Agric. Commun., 2(3), 15–21.
  • 43. Russell D.F. 1991. Microcomputer Statistical Package MSTAT-C, Directory Crop and Soil Science Department, Institute of International Agriculture, Michigan State Universty, Michigan, USA.
  • 44. Saxton K.E., Rawls W.J. 2006. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Amer. J., 70(5), 1569–1578.
  • 45. Savvas D., Gianquinto G., Tuzel Y., Gruda N. 2013. Soilless culture. Good agricultural practices for greenhouse vegetable crops, principles for Mediterranean climate areas, 217. FAO plant production and protection paper, 303–354.
  • 46. Seidhom S.H., Evon K.R. 2006. Determination of optimum water requirements for tomatos and squash under arid conditions at El-Maghara region, Egypt. Egyptian J. Desert Res., 56(2), 333–346.
  • 47. Singer S.M., Hamza A.E., Abd El-Samad E.H., Omaima M. Sawan, El-Behairy U.A., Abou-Hadid A.F. 2015. Growth, yield and mineral contents of lettuce cultivars grown in nutrient film technique (NFT) at different transplanting dates. Res. J. Pharm. Biol. Chem. Sci., 6(1), 172–183.
  • 48. Singh M.C., Kachwaya D.S., Kalsi K. 2018. Soilless cucumber cultivation under protective structures in relation to irrigation coupled fertigation management, economic viability and potential benefitsa review. Int. J. Curr. Microbiol. App. Sci., 7(3), 2451–2468.
  • 49. Soubeih K.A., Hafez M.R., Abd El-Baset A. 2018. Effect of grafting on cucumber (Cucumis sativus L.) productivity under saline conditions. Middle East J. Appl. Sci., 8(4), 1071–1079.
  • 50. Vital W.M., Teixeira N.T., Shigihara R., Ferraro A.E., Damaglio E.L., Alvero P. 2002. Behavior of varieties of lettuce (Lactuca sativa L.) cultivated in hydroponics with different nutritious solutions. Ecossistema, 27(1/2), 59–61.
  • 51. Wang M., Ling N., Dong X., Zhu Y., Shen Q., Guo S. 2012. Thermographic visualization of leaf response in cucumber plants infected with the soil-borne pathogen Fusarium oxysporum f. sp. Cucumerinum. Plant Physiol. Biochem., 61(12), 153–161.
  • 52. Wilson S.B., Stoffella P.J., Graetz D.A. 2001. Use of compost as a media amendment for containerized production of two subtropical perennials. J. Environ. Hortic., 19(1), 37–42.
  • 53. Zhang R.H., Duan Z.Q., Li Z.G. 2012. Use of spent mushroom substrate as growing media for tomato and cucumber seedlings. Pedosphere, 22(3), 333–342.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dcbdd234-73d7-4fc9-9650-dc57776fcba2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.