PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A Novel, Non-invasive Method for the Detection of Combustion Zone Propagation in Solid High Energy Materials by Means of Thermocouples and Pyrolytic Graphite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents a new, non-invasive method for the discrete detection of combustion zone propagation in high energy materials – pyrotechnic compositions – by means of thermocouples bonded to the external, side surface of a pyrolytic graphite (pyrographite) tube filled with the pyrotechnic composition and ignited at the one end by a CO2 laser. The thermocouples were positioned in a line parallel to the longitudinal axis of the pyrographite tube, which was used as a directional heat guide (thermal management) and a thermoresistant structure, enabling detection of the propagation of the combustion zone as a heat zone generated by the combustion, traveling on the outside surface of the pyrographite tube along its axis. Such a directional heat guidance was caused by the unique thermal conductivity anisotropy of pyrographite resulting in low thermal conductivity of the pyrographite tube along its axis and high thermal conductivity across the tube radius. The thermocouples detected passages of the outside heat zone that were equally time delayed in relation to the combustion zone inside the tube. Dividing the distance between the thermocouples by the time between their thermoelectric response to the same (corresponding) isotherm of the heat zone, gave the average burning rate of the high energy composition being tested over the distance between the thermocouples. The proposed procedure for burning rate determination was verified by numerical simulations.
Rocznik
Strony
417--431
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • Military Institute of Armament Technology, 7 Wyszyńskiego St., 05-220 Zielonka, Poland
  • Military Institute of Armament Technology, 7 Wyszyńskiego St., 05-220 Zielonka, Poland
autor
  • Faculty of Mechatronics and Aerospace, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
Bibliografia
  • [1] Bahman N.N., Combustion of Heterogeneous Condensed Systems (in Russian), (Goreniye geterogennyh kondensirovannyh sistem), Izdatelstvo Nauka, Moskva, 1967, pp.124-125.
  • [2] Razdan M.K., Kuo K.K., Erosive Burning of Solid Propellants, in: Fundamentals of Solid-propellant Combustion, American Institute of Aeronautics, Inc., New York, 1984, p.556.
  • [3] Strunina A.G., Butakova E.A., Demidova L.K., Barzykin V.V., Combustion of Gasless Systems at Cryogenic Temperatures (in Russian), Fiz. Goreniya Vzryva, 1988, 24(2), 99.
  • [4] Zarko V.E., Kuo K.K., Critical Review of Methods for Regression Rate Measurements of Condensed Phase Systems, in: Non-intrusive Combustion Diagnostics, (Kuo K.K, Parr T., Eds.), Begel House, New York, 1994, p. 603.
  • [5] Araujo L., Frota D., Thermochemical Characteristics of AN/AP Based Composite Propellants, 25th Int. Annu. Conf. ICT, Karlsruhe, Germany, 1994, 58-1/51-9.
  • [6] Duraes L., Campos J., Campos-Andrade A., Portugal A., Decomposition Path of Pyrolysis and Combustion of Potassium Nitrate/Thermite Compositions, IPS Proc. Semin. 33rd, Fort Collins, CO, USA, 2006, 232-235.
  • [7] Dahn C.J., Dastidar A.G., Kashani A., Bradlock M., Brabec T., A New Small-scale Burn Rate Test Method, IPS Proc. Semin. 33rd, Fort Collins, CO, USA, 2006, 291-296.
  • [8] Hossjer K., Studies of the Heat Problem of Burning Gasless Pyrotechnic Compositions Compressed in Cylindrical Copper-tubes, Chem. Probl. Connected with the Explos. Stabil., Proc. Symp. 1st, Stockholm, Sweden, 1967, 92.
  • [9] Mordado J., Duraes L., Campos J., Portugal A., Iron Oxide/Aluminum Fast Thermite Reaction using Nitrate Additives, New Trends Res. Energ. Mater., Proc. Semin., 5th, Pardubice, Czech Republic, 2002, 208-222.
  • [10] Sutton G.P., Rocket Propulsion Elements, John Wiley and Sons, Inc., New York, Chapman and Hall Ltd., London, 1956, pp. 424-425.
  • [11] Static Firing Tests of Solid Propellant Rocket Motors, FR/GE/UK/US International Test Operations Procedures (ITOP) 5-2-500, Defense Technical Information Center (DTIC), 2000, p. 9, C-1.
  • [12] Farbisz R., Grudniewicz W., Temperature Measurements of Rocket Motor Construction Elements (in Polish), Problemy Techniki Uzbrojenia i Radiolokacji, 1979, 20, 37-47.
  • [13] Bunker R.C., Ewing M.E., Shipley L., Pyrolytic Graphite Gauge for Measuring Heat Flux, US Patent 6499289, 2002.
  • [14] Miszczak M., Panas A.J., Swiderski W., A New Method for Continuous Measurements of Solid Rocket Propellant Burning Rate with Use of IR Camera (in Polish), Pomiary Automatyka Kontrola, 2009, 55(11), 950-953.
  • [15] Swiderski W., Miszczak M., Panas A.J., A Novel Technique for the Continuous Evaluation of Burning Rate of Solid Rocket Propellant by Using IR Thermography, QIRT Journal, 2011, 8(1), 111-114.
  • [16] Miszczak M., Swiderski W., Optical Detection of Combustion Zone Movement In Solid High-energy Materials, Combust. Explos. Shock Waves, 2014, 50(2), 178-182.
  • [17] Panas, A.J., IR Support of Thermophysical Property Investigation (Medical and Advanced Technology Materials Study, in: Infrared Thermography, (Raghu V.P., Ed.), Intech, Rijeka, 2011, pp. 65-90.
  • [18] Panas A.J., Cudziło S., Terpiłowski J., Investigation of Thermophysical Properties of Metal-Polytetrafluoroethylene Pyrotechnic Compositions, High Temp. – High Press., 2003, 34, 691-698.
  • [19] Panas A. J., Panas D., DSC Investigation of Binary Iron-nickel Alloys, High Temp. – High Press., 2009, 38, 63-78.
  • [20] Panas A.J., Cudziło S., Investigations of Temperature Profiles of Deflagration Wave in Me-PTFE Pyrotechnic Mixtures, Temp. and Thermal Measurements, in: Industry and Science Proc. Symp., 9th, Cavtat – Dubrovnik, Croatia, 2004, 2, 1279-1284.
  • [21] Melkumov T.M., Melik-Pashaev N.I., Chistiakov P.G., Shiukov A.G., Rocket Motors (in Russian), (Raketnye dvigateli), Izdatelstvo Mashinostroeniye, Moskva, 1976, pp.173-174.
  • [22] COMSOL Multiphysics, Heat Transfer Module, v.33.COMSOL AB, August 2006.
  • [23] Ozisk M.N., Heat Conduction, John Wiley and Sons Inc., New York, 1993.
  • [24] Bejan A., Convective Heat Transfer, John Wiley and Sons Inc., New York, 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dcbd1015-ad0c-4d0c-a885-1967b2003acc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.