PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Using One Axiom to Characterize Fuzzy Rough Approximation Operators Determined by a Fuzzy Implication Operator

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Axiomatic characterizations of approximation operators are important in the study of rough set theory. In this paper, axiomatic characterizations of relation-based fuzzy rough approximation operators determined by a fuzzy implication operator I are investigated. We first review the constructive definitions and properties of lower and upper I-fuzzy rough approximation operators. We then propose an operator-oriented characterization of I-fuzzy rough sets. We show that the lower and upper I-fuzzy rough approximation operators generated by an arbitrary fuzzy relation can be described by single axioms. We further examine that I-fuzzy rough approximation operators corresponding to some special types of fuzzy relations, such as serial, reflexive, and T -transitive ones, can also be characterized by single axioms.
Wydawca
Rocznik
Strony
87--104
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
autor
  • School of Mathematics, Physics and Information Science Zhejiang Ocean University Zhoushan, Zhejiang 316022, P. R. China
  • Key Laboratory of Oceanographic Big Data Mining & Application of Zhejiang Province Zhejiang Ocean University Zhoushan, Zhejiang 316022, P. R. China
autor
  • School of Mathematics, Physics and Information Science Zhejiang Ocean University Zhoushan, Zhejiang 316022, P. R. China
  • Key Laboratory of Oceanographic Big Data Mining & Application of Zhejiang Province Zhejiang Ocean University Zhoushan, Zhejiang 316022, P. R. China
autor
  • School of Mathematics, Physics and Information Science Zhejiang Ocean University Zhoushan, Zhejiang 316022, P. R. China
  • Key Laboratory of Oceanographic Big Data Mining & Application of Zhejiang Province Zhejiang Ocean University Zhoushan, Zhejiang 316022, P. R. China
Bibliografia
  • [1] Abdel-Hamid, A.A., Morsi, N.N.: On the relationship of extended necessity measures to implication operators on the unit interval, Information Sciences, 82, 1995, 129–145.
  • [2] Baczynski,M., Jayaram, B.: Fuzzy implications, Studies in Fuzziness and Soft Computing, vol. 231, Springer, Berlin, 2008.
  • [3] Cornelis, C., Deschrijver, G., Kerre, E.E.: Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application, International Journal of Approximate Reasoning, 35, 2004, 55–95.
  • [4] Hooshmandasl, M.R., Karimi, A., Almbardar, M., Davvaz, B.: Axiomatic systems for rough set-valued homomorphisms of associative rings, International Journal of Approximate Reasoning, 54, 2013, 297–306.
  • [5] Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, Trends in Logic, vol. 8, Kluwer Academic Publishers, Dordrecht, 2000.
  • [6] Klir, G.J., Yuan, B.: Fuzzy Logic: Theory and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1995.
  • [7] Lin, T.Y., Liu, Q.: Rough approximate operators: axiomatic rough set theory, in: Ziarko, W. (Ed.), Rough Sets, Fuzzy Sets and Knowledge Discovery, Springer, Berlin, 1994, pp. 256–260.
  • [8] Liu, G.L.: Generalized rough set over fuzzy lattices, Information Sciences, 178, 2008, 1651–1662.
  • [9] Liu, G.L.: Axiomatic systems for rough sets and fuzzy rough sets, International Journal of Approximate Reasoning, 48, 2008, 857–867.
  • [10] Liu, G.L.: Using one axiom to characterize rough set and fuzzy rough set approximations, Information Sciences, 223, 2013, 285–296.
  • [11] Liu, X.D., Pedrycz, W., Chai, T.Y., Song, M.L.: The development of fuzzy rough sets with the use of structures and algebras of axiomatic fuzzy sets, IEEE Transactions on Knowledge and Data Engineering, 21, 2009, 443–462.
  • [12] Mas, M., Monserrat,M., Torrens, J., Trillas, E.: A survey on fuzzy implication functions, IEEE Transactions on Fuzzy Systems, 15, 2007, 1107–1121.
  • [13] Mi, J.-S., Leung, Y., Zhao, H.-Y., Feng, T.: Generalized fuzzy rough sets determined by a triangular norm, Information Sciences, 178, 2008, 3203–3213.
  • [14] Mi, J.-S., Zhang, W.-X.: An axiomatic characterization of a fuzzy generalization of rough sets, Information Sciences, 160, 2004, 235–249.
  • [15] Morsi, N.N., Yakout, M.M.: Axiomatics for fuzzy rough sets, Fuzzy Sets and Systems, 100, 1998, 327–342.
  • [16] Ouyang, Y., Wang, Z.D., Zhang, H.-P.: On fuzzy rough sets based on tolerance relations, Information Sciences, 180, 2010, 532–542.
  • [17] Radzikowska, A.M., Kerre, E.E.: A comparative study of fuzzy rough sets, Fuzzy Sets and Systems, 126, 2002, 137–155.
  • [18] Ruan, D., Kerre, E.E.: Fuzzy implication operators and generalized fuzzy method of cases, Fuzzy Sets and Systems, 54, 1993, 23–37.
  • [19] She, Y.H., Wang, G.J.: An axiomatic approach of fuzzy rough sets based on residuated lattices, Computers and Mathematics with Applications, 58, 2009, 189–201.
  • [20] Thiele, H.: On axiomatic characterisation of crisp approximation operators, Information Sciences, 129, 2000, 221–226.
  • [21] Thiele, H.: On axiomatic characterisation of fuzzy approximation operators I, the fuzzy rough set based case, RSCTC 2000, Banff Park Lodge, Bariff, Canada, 2000, Conference Proceedings, pp. 239–247.
  • [22] Thiele, H.: On axiomatic characterisation of fuzzy approximation operators II, the rough fuzzy set based case, Proceeding of the 31st IEEE International Symposium on Multiple-Valued Logic, 2001, pp. 330–335.
  • [23] Wang, L.D., Liu, X.D., Qiu, W.R.: Nearness approximation space based on axiomatic fuzzy sets, International Journal of Approximate Reasoning, 53, 2012, 200–211.
  • [24] Wu,W.-Z.: On some mathematical structures of T -fuzzy rough set algebras in infinite universes of discourse, Fundamenta Informaticae, 108, 2011, 337–369.
  • [25] Wu, W.-Z., Leung, Y., Mi, J.-S.: On characterizations of (I, T)-fuzzy rough approximation operators, Fuzzy Sets and Systems, 15, 2005, 76–102.
  • [26] Wu, W.-Z., Leung, Y., Shao, M.-W.: Generalized fuzzy rough approximation operators determined by fuzzy implicators, International Journal of Approximate Reasoning, 54, 2013, 1388–1409.
  • [27] Wu, W.-Z., Mi, J.-S.: Some mathematical structures of generalized rough sets in infinite universes of discourse, LNCS Transactions on Rough Sets, XIII, 2011, 175–206.
  • [28] Wu, W.-Z., Mi, J.-S., Zhang, W.-X.: Generalized fuzzy rough sets, Information Sciences, 151, 2003, 263–282.
  • [29] Wu, W.-Z., Zhang, W.-X.: Constructive and axiomatic approaches of fuzzy approximation operators, Information Sciences, 159, 2004, 233–254.
  • [30] Yang, X.-P.: Minimization of axiom sets on fuzzy approximation operators, Information Sciences, 177, 2007, 3840–3854.
  • [31] Yang, X.-P., Li, T.-J.: The minimization of axiom sets characterizing generalized approximation operators, Information Sciences, 176, 2006, 887–899.
  • [32] Yao, Y.Y.: Constructive and algebraic methods of the theory of rough sets, Journal of Information Sciences, 109, 1998, 21–47.
  • [33] Yao, Y.Y.: Two views of the theory of rough sets in finite universes, International Journal of Approximate Reasoning, 15, 1996, 291–317.
  • [34] Yao, Y.Y., Lin, T. Y.: Generalization of rough sets using modal logic, Intelligent Automation and Soft Computing, 2, 1996, 103–120.
  • [35] Yeung, D.S., Chen, D.G., Tsang, E.C.C., Lee, J.W.T.,Wang, X.Z.: On the generalization of fuzzy rough sets, IEEE Transactions on Fuzzy Systems, 13, 2005, 343–361.
  • [36] Zhang, Y.L., Li, J.J., Wu, W.-Z.: On axiomatic characterizations of three pairs of covering based approximation operators, Information Sciences, 180, 2010, 274–287.
  • [37] Zhang, Y.L., Luo, M.K.: On minimization of axiom sets characterizing covering-based approximation operators, Information Sciences, 181, 2011, 3032–3042.
  • [38] Zhu,W., Wang, F.-Y.: Reduction and axiomization of covering generalized rough sets, Information Sciences, 152, 2003, 217–230.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dcb72bfb-edb4-4686-9647-c3c0d722d31a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.