PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of pre-treatment efficiency on sugarcane bagasse fibers for the production of cement composites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, physical, chemical, morphological, crystallographic analysis of the non-treated and treated (100 °C during 30 min) sugarcane bagasse fibers were examined. Sugarcane bagasse fibers pre-treatment effect on the Portland cement hydration was monitored by inhibition tests and differential scanning calorimetry in the first 24 h. Furthermore, 28 days age physical-mechanical properties of cement composite materials with sugarcane bagasse fibers were also evaluated. Inhibition index of treated sugarcane bagasse fibers was 5.9%, while for the non-treated sugarcane bagasse fibers it was 67.3%. Cement composites containing treated sugarcane bagasse fibers showed lower physical properties (water absorption and thickness swelling) than the cement composites reinforced with non-treated sugarcane bagasse fibers (p < 0.05). Likewise, mechanical properties under flexure (modulus of rupture, MOR, and modulus of elasticity, MOE) of cement composites with treated sugarcane bagasse fibers showed higher values than the cement composites with non-treated sugarcane bagasse fibers (p < 0.05), thus proving the pre-treatment efficiency on sugarcane bagasse fibers for cement composites.
Słowa kluczowe
Rocznik
Strony
1092--1102
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Biosystems Engineering, São Paulo University, Av. Duque de Caxias Norte, 225, Jd. Elite, 13635-900 Pirassununga, SP, Brazil
  • Department of Biosystems Engineering, São Paulo University, Av. Duque de Caxias Norte, 225, Jd. Elite, 13635-900 Pirassununga, SP, Brazil
  • Department of Biosystems Engineering, São Paulo University, Av. Duque de Caxias Norte, 225, Jd. Elite, 13635-900 Pirassununga, SP, Brazil
  • Research and Development Institute for the Agri-environment, 2700 Einstein Street, G1P 3W8 Quebec City, Quebec, Canada
autor
  • Research and Development Institute for the Agri-environment, 2700 Einstein Street, G1P 3W8 Quebec City, Quebec, Canada
  • Soil and Agricultural Engineering, Laval University, Pavillon Paul-Comtois 2425, rue de l'Agriculture, Québec, Canada
autor
  • Department of Biosystems Engineering, São Paulo University, Av. Duque de Caxias Norte, 225, Jd. Elite, 13635-900 Pirassununga, SP, Brazil
autor
  • Department of Biosystems Engineering, São Paulo University, Av. Duque de Caxias Norte, 225, Jd. Elite, 13635-900 Pirassununga, SP, Brazil
Bibliografia
  • [1] Company of the National Supply (Conab), Monitoring of the Brazilian Grain Harvest, National Supply Company, Brasilia, Brazil, 2016.
  • [2] M.R. Cabral, E.Y. Nakanishi, J. Fiorelli, Evaluation of the effect of accelerated carbonation in cement-bagasse panels after cycles of wetting and drying, J. Mater. Civ. Eng. 29 (2017) 04017018.
  • [3] R. Jarabo, M.C. Monte, E. Fuente, S.F. Santos, C. Negro, Corn stalk from agricultural residue used as reinforcement fiber in fiber-cement production, Ind. Crops Prod. 43 (2013) 832–839.
  • [4] G. Mármol, H. Savastano Jr., J. Monzó, M. Borrachero, L. Soriano, J. Payá, Portland cement, gypsum and fly ash binder systems characterization for lignocellulosic fiber-cement, Constr. Build. Mater. 124 (2016) 208–218.
  • [5] H.F.W. Taylor, Cement Chemistry, 2nd ed., Telford, London, 1997.
  • [6] E.Y. Okino, M.R. Souza, M.D.E. Santana, M.V.S. Alves, M.E. Sousa, D.E. Teixeira, Cement-bonded wood particleboard with a mixture of eucalypt and rubberwood, Cem. Concr. Compos. 26 (2004) 729–734.
  • [7] A. Govin, A. Peschard, R. Guyonnet, Modification of cement hydration at early ages by natural and heated wood, Cem. Concr. Compos. 28 (2006) 12–20.
  • [8] K. Bilba, M.A. Arsene, A. Ouensanga, Sugar cane bagasse fibre reinforced cement composites. Part I. influence of the botanical components of bagasse on the setting of bagasse/ cement composite, Cem. Concr. Compos. 25 (2003) 91–96.
  • [9] S. Chakraborty, P.K. Sarada, R. Aparna, A. Basudam, S.B. Majumder, Effect of jute as fiber reinforcement controlling the hydration characteristics of cement matrix, Ind. Eng. Chem. Res. 53 (2013) 1252–1260.
  • [10] J.M. Ferraz, C.H.D. Menezzi, D.E. Teixeira, S.A. Martins, Effects of treatment of coir fiber and cement/fiber ratio on properties of cement-bonded composites, BioResources 6 (2011) 3481–3492.
  • [11] Brazilian Standard – NBR 5733, Portland Cement of High Initial Strength: Specification, 1993 (in Portuguese).
  • [12] French Standard – NF V03-040, Agricultural and Food Products—Determination of Crude Fibre, 1993 (in French).
  • [13] J.P.S. Morais, M.F. Rosa, J.M. Marconcini, Procedimentos Para Análise Lignocelulósica. Documentos 236. Embrapa Algodão, 2010 (in Portuguese).
  • [14] L. Boulos, M. Foruzanmehr, A. Tagnit-Hamou, S. Elkoun, M. Robert, Wetting analysis and surface characterization of flax fibers modified with zirconia by sol-gel method, Surf. Coat. Technol. 313 (2017) 407–416.
  • [15] L.Q.N. Tran, C. Fuentes, C. Dupont-Gillain, A. Van Vuure, I. Verpoest, Wetting analysis and surface characterisation of coir fibres used as reinforcement for composites, Colloids Surf. A 377 (2011) 251–260.
  • [16] J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size, J. Appl. Crystallogr. 11 (1978) 102–113.
  • [17] A.D. French, Idealized powder diffraction patterns for cellulose polymorphs, Cellulose 21 (2014) 885–896.
  • [18] G. Buschle-Diller, S.H. Zeronian, Enhancing the reactivity and strength of cotton fibers, J. Appl. Polym. Sci. 45 (1992) 967–979.
  • [19] R.C. Weatherwax, H. Tarkow, Effect of wood on setting of Portland cement, For. Prod. J. 14 (1964) 567–570.
  • [20] European Standard – EN 322, Wood-Based Panels. Determination of Moisture Content, 1993.
  • [21] European Standard – EN 323, Wood-Based Panels. Determination of Density, 1993.
  • [22] European Standard – EN 310, Wood-Based Panels Determination of Modulus of Elasticity in Bending and of Bending Strength, 1993.
  • [23] M. Fan, M.K. Ndikontar, X. Zhou, J.N. Ngamveng, Cement- bonded composites made from tropical woods: compatibility of wood and cement, Constr. Build. Mater. 36 (2012) 135–140.
  • [24] Y. Yuan, T.R. Lee, Contact angle and wetting properties, Surf. Sci. Technol. 51 (2013) 3–34, Springer Berlin Heidelberg, Berlin, Heidelberg.
  • [25] J.E.M. Ballesteros, V. Santos, G. Mármol, M. Frías, J. Fiorelli, Potential of the hornification treatment on eucalyptus and pine fibers for fiber-cement applications, Cellulose 24 (5) (2017) 2275–2286.
  • [26] J. Helmerius, J.V. Von-Walter, U. Rova, K.A. Berglund, D.B. Hodge, Impact of hemicellulose pre-extraction for bioconversion on birch Kraft pulp properties, Bioresour. Technol. 101 (2010) 5996–6005.
  • [27] Z. Yaguang, D.P. Kamdem, Effect of cement/wood ratio on the properties of cement-bonded particleboard using CCA-treated wood removed from service, For. Prod. J. 52 (2002) 77–81.
  • [28] M.R. Meier, S. Manasit, S. Prinya, J. Plank, Early hydration of Portland cement studied under microgravity conditions, Constr. Build. Mater. 93 (2015) 877–883.
  • [29] M. Atkins, F.P. Glasser, A. Kindness, Cement hydrate phases: solubility at 25 8C, Cem. Concr. Res. 22 (1992) 241–246.
  • [30] M. Rupasighe, R.S. Nicolas, P. Mendis, M. Sofi, T. Ngo, Investigation of strength and hydration characteristics in nano-silica incorporated cement paste, Cem. Concr. Compos. 80 (2017) 17–30.
  • [31] K.L. Scriviner, The microstructure of concrete, in: J.P. Skalny (Ed.), The American Ceramic Society – Materials Science of Concrete, American Ceramic Society, Westerville, OH, 1989 127–161.
  • [32] N.L. Thomas, J.D. Birchall, The retarding action of sugars on cement hydration, Cem. Concr. Res. 13 (1983) 830–842.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dcaad0ad-444f-4c75-9a22-24335019fb4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.