PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Accumulation of Heavy Metals in Silphium Perfoliatum L. for the Cultivation of Oil-Contaminated Soils

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of research on the effectiveness of the use of crops of Silphium Perfoliatum L. for phytoremediation of soils in oil-contaminated areas. Silphium Perfoliatum L. is characterized by unique opportunities for productivity and longevity, can be cultivated in one place for many years. The aim of our work was investigating the rate of accumulation of heavy metals in the aboveground and root mass of Silphium Perfoliatum L. during the introduction of sewage sludge in oil-contaminated areas. The research was conducted in the Precarpathians of Ukraine in Ivano-Frankivsk region. The experimental field is slightly sod-podzolic sandy, there are several remnants of oil spills, the so-called oil slicks. The experiment included 8 options of fertilizing Silphium Perfoliatum L. In soils of contaminated areas determined content of total and mobile forms of metals and their content in the green mass and plant roots by methods according to ISO 4770.3 – GOST 4770.9, atomic adsorption methods in the lab of Ivano-Frankivsk State Institution branch "Soil Protection". The metal translocation coefficient in the system «soil-vegetative mass» and in the system «soil-root» increases in a number: Cd → Ni→ Cot → Pb. That is, the lowest translocation coefficient is in the lead. However, the difference is that in the system «soil-root» the coefficient of translocation is higher by 2–3%, from the translocation of metals in the system «soil – vegetative mass». The coefficient of biological accumulation of heavy metals by perforated sylph increase in a number of elements: Pb → Co → Ni → Cd.
Twórcy
  • National University of Life and Environmental Sciences of Ukraine, Heroyiv Oborony St. 15, Kyiv, 03041, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska St. 15, Ivano-Frankivsk, 76019, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska St. 15, Ivano-Frankivsk, 76019, Ukraine
  • Odessa National Medical University, Valikhovskiy Lane 2, Odessa, Ukraine
  • National University of Life and Environmental Sciences of Ukraine, Heroyiv Oborony St. 15, Kyiv, 03041, Ukraine
  • National University of Life and Environmental Sciences of Ukraine, Heroyiv Oborony St. 15, Kyiv, 03041, Ukraine
autor
  • National University of Life and Environmental Sciences of Ukraine, Heroyiv Oborony St. 15, Kyiv, 03041, Ukraine
  • National University of Life and Environmental Sciences of Ukraine, Heroyiv Oborony St. 15, Kyiv, 03041, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska St. 15, Ivano-Frankivsk, 76019, Ukraine
Bibliografia
  • 1. Ait Elallem, K., Sobeh, M., Boularbah, A., & Yasri, A. 2021. Chemically degraded soil rehabilitation process using medicinal and aromatic plants: Review. Environmental Science and Pollution Research, 28(1), 73–93. doi:10.1007/s11356–020–10742-y.
  • 2. Avessalomova I.A. 1987. Geohimicheskie pokazateli pri izuchenii landshaftov [Geochemical indicators in the study of landscapes]. Izd-vo MGU.
  • 3. Bekuzarova, S.A., Khatsaeva, F.M., Tebieva, D.I., Bekmurzov, A.D., Kebalova, L.A., & Gobeev, M.A. 2021. Soil toxicity reduction by phytoindicators. Paper presented at the IOP Conference Series: Earth and Environmental Science, 677(4) doi:10.1088/1755–1315/677/4/042100
  • 4. Burt R. 2004. Soil survey laboratory methods manual. Soil Survey Investigations Report No. 42, Version 4.0, Natural Resources Conservation Service, United States Department of Agriculture.
  • 5. Blanca Montalbán, Carmen Lobo, Juan Alonso, Araceli Pérez-Sanz. 2016. Metal(loid)s Uptake and Effects on the Growth of Helianthus tuberosus Cultivar-Clones Under Multi-Polluted Hydroponic Cultures. Clean – Soil, Air, Water, 44(10), 1368–1374. https://doi.org/10.1002/clen.201400630
  • 6. Cui, X., Zhang, J., Wang, X., Pan, M., Lin, Q., Khan, K. Y., Chen, G. 2021. A review on the thermal treatment of heavy metal hyperaccumulator: Fates of heavy metals and generation of products. Journal of Hazardous Materials, 405 doi:10.1016/j.jhazmat.2020.123832.
  • 7. Cho-Ruk K., J. Kurukote, P. Supprung, and S. Vetayasuporn. 2006. Perennial plants in the phytoremediation of lead-contaminated soils. Biotechnology, 5(1), 1–4.
  • 8. Faruqui, N.I., Scott, C.A., Raschid-Sally, L. 2004. Confronting the realities of waste water in irrigated agriculture: lessons learned and recommendations. IDRC Books Free online. http://www.idrc.ca.
  • 9. Eissa, M.A., Ghoneim, M.F., Elgharably, G.A., AbdElRazek, M. 2014. Phytoextraction of nickel, lead and cadmium from metals contaminated soils using different field crops and EDTA. World Applied Science Journal. 32, 1045–1052.
  • 10. Eissa, M. A. 2014. Performance of river saltbush (Atriplex amnicola) grown on contaminated soils as affected by organic fertilization. World Applied Science Journal. 30, 1877–1881.
  • 11. European Commission DG ENV. E3. 2002. Heavy Metals in Waste, Final Report Project ENV.E.3/ETU/2000/0058,http://ec.europa.eu/environment/waste/studies/pdf/heavy_metalsreport.pdf.
  • 12. Gaur A. and A. Adholeya. 2004. Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Science, 86(4), 528–534.
  • 13. Gamayunova V., Sydiakina O., Dvoretskyi V., Markovska O. (2021). Productivity of Spring Triticale under Conditions of the Southern Steppe of Ukraine. Ecological Engineering & Environmental Technology, 22(2), 104–112. https://doi.org/10.12912/27197050/133456
  • 14. Ghazala M., Setsuko K. 2016. Toxicity of heavy metals and metal-containing nanoparticles on plants. Plant Gene, 2017, 11B, 247–254.
  • 15. Ghori N.-H., Ghori T., Hayat M. Q., Imadi S. R., Gul A., Altay V. Ozturk M. 2019. Heavy metal stress and responses in plants. International Journal of Environmental Science and Technology, 16, 1807–1828
  • 16. Ghosh, A.K., Bhatt, M.A., Agrawal, H.P. 2012. Effect of long-term application of treated sewage water on heavy metal accumulation in vegetables grown in northern India. Environ. Monit. Assess. 1842, 1025–1036.
  • 17. Ilyas, N., Shoukat, U., Saeed, M., Akhtar, N., Yasmin, H., Khan, W., & Iqbal, S. 2021. Comparison of plant growth and remediation potential of pyrochar and thermal desorption for crude oil-contaminated soils. Scientific Reports, 11(1). doi:10.1038/s41598–021–82243-y.
  • 18. Korsun S.G., Klymenko I. I., Bolokhovska V. А., Bolokhovskyy V.V. 2019. Translokatsiya vazhkykh metaliv u systemi «grunt-roslyna» za vapnuvannya ta vplyvu biolohichnykh preparativ [Translocation of heavy metals in the “soil-plant” system under liming and exposure to biological drugs. Agroecological monitoring, 1, 29–35. doi: https://doi.org/10.33730/2077–4893.1.2019.163245.
  • 19. Lasat M. M. 2000. Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. Journal of Hazardous Substance Research, 2(5), 1–25.
  • 20. Lopushniak V., Hrytsuliak H., Kotsiubynsky A.,Lopushniak H. 2021. Forecasting the Productivity of the Agrophytocenoses of the Miscanthus Giganteus for the Fertilization Based on the Wastewater Sedimentation Using Artificial Neural Networks Ecological Engineering & Environmental Technology. 22(3), 11–19. https://doi.org/10.12912/27197050/134867
  • 21. Lopushniak, V.I., Hrytsuliak, H.M. 2021. The models of the heavy metal accumulation of the multiple grain energy cultures for wastewater deposition on oil-polluted degraded soils. Ecological Engineering and Environmental Technology, 22(4), 1–13.
  • 22. Lopushniak V., Tonkha O., Hrytsuliak H., Lopushniak H., Polutrenko M., Poberezhna L., Pikovska O., Tomasz Jakubowski, Kotsiubynsky Y., 2022. Productivity model of herbal bioenergy cultures depending on biometric indicators of overhead mass. Ecological Engineering & Environmental Technology 23(2), 162–172.
  • 23. Rovira, J., Nadal, M., Schuhmacher, M., & Domingo, J.L. 2021. Environmental impact and human health risks of air pollutants near a large chemical/petrochemical complex: Case study in tarragona, spain. Science of the Total Environment, 787 doi:10.1016/j.scitotenv.2021.147550.
  • 24. Rakhshaee R., M. Giahi, and A. Pourahmad. 2009. Studying effect of cell wall’s carboxyl-carboxylate ratio change of Lemna minor to remove heavy metals from aqueous solution. Journal of Hazardous Materials, 163(1), 165–173.
  • 25. Radu Sumalan, L., Muntean, C., Kostov, A., Kržanović, D., Noemi Jucsor, L., Sorin Ciulca, I., Cernicova-Buca, M. 2020. The cup plant (Silphium perfoliatum L.) – a viable solution for bioremediating soils polluted with heavy metals. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4), 2095–2113. doi:10.15835/48412160
  • 26. Sarapulova, G.I. 2021. Study of the immobilizing capacity of humic substances in soils at oil contamination. Paper presented at the IOP Conference Series: Earth and Environmental Science, 720(1) doi:10.1088/1755–1315/720/1/012046
  • 27. Shtangeeva, J., V.-P. Laiho, H. Kahelin, and G.R. Gobran. 2004. Phytoremediation of metal-contaminated soils. Symposia Papers Presented Before the Division of Environmental Chemistry. American Chemical Society, Anaheim, Calif, USA, , http://ersdprojects.science.doe.gov/workshop_pdfs/california_2004/p050.pdf.
  • 28. Sivkov, Y. & Nikiforov, A. 2021. Study of oil-contaminated soils phytotoxicity during bioremediation activities. Journal of Ecological Engineering, 22(3), 67–72. doi:10.12911/22998993/132435
  • 29. Soil quality. Determination of the content of mobile cadmium compounds in a buffer ammonium acetate extract with a pH of 4.8 by atomic absorption spectrophotometry: DSTU 4770.3: 2007. – Effective from 2009–01–01. К.: Держспоживстандарт України, 2009. 14 с. (National standard of Ukraine).
  • 30. Soil quality. Determination of the content of mobile cobalt compounds in a buffer ammonium acetate extract with a pH of 4.8 by atomic absorption spectrophotometry: DSTU 4770.5: 2007. – Effective from 2009–01–01. К.: Держспоживстандарт України, 2009. 14 с. (National standard of Ukraine).
  • 31. Soil quality. Determination of the content of mobile nickel compounds in a buffer ammonium acetate extract with a pH of 4.8 by atomic absorption spectrophotometry: DSTU 4770.7: 2007. Effective from 2009–01–01. К.: Держспоживстандарт України, 2009. 14 с. (National standard of Ukraine).
  • 32. Soil quality. Determination of the content of mobile lead compounds in a buffer ammonium acetate extract with a pH of 4.8 by atomic absorption spectrophotometry: DSTU 4770.9: 2007. Effective from 2009–01–01. К.: Держспоживстандарт України, 2009. 14 с. (National standard of Ukraine).
  • 33. Taketani, N.F., Taketani, R.G., Leite, S.G.F., Melo, I.S., de Lima-Rizzo, A.C., Andreote, F.D., & da Cunha, C.D. 2021. Application of extracellular polymers on soil communities exposed to oil and nickel contamination. Brazilian Journal of Microbiology, 52(2), 651–661. doi:10.1007/s42770–021–00428-z.
  • 34. Tonkha O., A. Butenko, O. Bykova, Yu. Kravchenko, O. Pikovska, V. Kovalenko, I. Evpak, I. Masyk, E. Zakharchenko. 2021. Spatial Heterogeneity of Soil Silicon in Ukrainian Phaozems and Chernozems. Journal of Ecological Engineering, 22(2), 111–119.
  • 35. Tonkha, O., Butenko, A., Bykova, O., Kravchenko, Y., Pikovska, O., Kovalenko, V., Zakharchenko, E. 2020. Spatial heterogeneity of soil silicon in ukrainian phaozems and chernozems. Journal of Ecological Engineering, 22(2), 111–119. doi:10.12911/22998993/130884
  • 36. Tonkha, O.L., Sychevskyi, S.O., Pikovskaya, O.V., & Kovalenko, V.P. 2018. Modern approach in farming based on estimation of soil properties variability. Paper presented at the 12th International Scientific Conference «Monitoring of Geological Processes and Ecological Condition of the Environment», doi:10.3997/2214–4609.201803199
  • 37. Vysotskaya, L.B., Kudoyarova, G.R., Arkhipova, T.N., Kuzina, E.V., Rafikova, G.F., Akhtyamova, Z.A., Loginov, O.N. 2021. The influence of the association of barley plants with petroleum degrading bacteria on the hormone content, growth and photosynthesis of barley plants grown in the oilcontaminated soil. Acta Physiologiae Plantarum, 43(4) doi:10.1007/s11738–021–03240–2.
  • 38. Yakovleva, E.V. 2021. Biological monitoring experience of a natural and anthropogenic ecosystems ecological stability on the «spasskoye-lutovinovo» reserve territory with central forest-steppe gray forest soils. Paper presented at the IOP Conference Series: Earth and Environmental Science, 666(6) doi:10.1088/1755–1315/666/6/062028
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dca26045-4b5d-4982-a57c-32f79aaba871
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.