PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of unevenness and instability of flue gas temperature on the technical condition of gas turbine blades

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gas turbines are used in the power sector, aviation, pump houses, and other technical systems. Such a broad range of application is associated with favourable indicators: high power, rather low weight per unit of power, significant efficiency, as well as high durability. All of these indicators greatly depend on the combustion chamber flue gas temperature. It is important for the flue gas temperature to be uniform around the turbine perimeter and stable over time. This condition is extremely important also in the case of frequent temperature variations associated, e.g. with a variable operating range of a manoeuvre aircraft turbojet engine. The paper analyses the causes for the unevenness and instability of combustion chamber flue gas temperature. The impact of the fuel quality, the technical condition of the fuel supply system, as well as the operating conditions of the combustion chamber-turbine assembly was shown. The issues regarding the presence of various types of damage to turbine elements, their blades in particular, were defined. The main cause behind the damage is the unevenness and instability of flue gas temperature, resulting in the presence of overheating, creeping, thermal fatigue, high-temperature corrosion of blade material. The forms of that damage, especially the first turbine stages, were presented. Blade material microstructure test results showed increased layer thickness, grain-size, and especially, adverse modification of the strengthening γ' phase in the temperature function. It was concluded periodic diagnostics of turbine blades with the optical method enables the non-invasive evaluation of their technical condition and drawing conclusions in terms of their durability.
Twórcy
autor
  • Air Force Institute of Technology Ksiecia Boleslawa Street 6, 01-494 Warsaw, Poland tel.: +48 261 851393
autor
  • Air Force Institute of Technology Ksiecia Boleslawa Street 6, 01-494 Warsaw, Poland tel.: +48 261 851393
  • Air Force Institute of Technology Ksiecia Boleslawa Street 6, 01-494 Warsaw, Poland tel.: +48 261 851393
Bibliografia
  • [1] Błachnio, J., Bogdan, M., A non-destructive method to assess condition of gas turbine blades, based on the analysis of blade-surface image, Russian Journal of Nondestructive Testing, Vol. 46, No. 11, pp. 860-866, 2010.
  • [2] Błachnio, J., Bogdan, M., Zasada, D.: Increased temperature impact on durability of gas turbine blades, Niezawodność i Eksploatacja – Maintenance and Reliability, Vol. 19 No. 1, pp. 48-53, 2017.
  • [3] Błachnio, J., Dięgielewski, W., Kułaszka, A., Zasada, D., Operation-attributable factors and how they affect condition of heat-resistant coatings of gas-turbine blades, Studies and Proceedings of the Polish Association of Knowledge Management, No. 68, pp. 17-31, 2014.
  • [4] Dzida, M., Identification of reasons for non-stationary and non-homogenous behaviour of gas temperatures and pressures downstream the combustion chamber of gas turbines, University of Technology in Gdansk, 2000.
  • [5] Gieras, M., Combustion chambers of turbine engines. Combustion process organisation, Warsaw University of Technology, Warsaw 2010.
  • [6] Girtler, J., Dzida, M., The method for evaluating the operation of ship engines in terms of power engineering, Polskie Badania Morskie, Vol. 23, No. 4 (92), pp. 67-72, 2016.
  • [7] Jankowski, A., Kowalski, M., Start-up Processes' Efficiency of Turbine Jet Engines, Journal of KONBiN, Vo1. 40, Issue 1, DOI 10.1515/jok-2016-0041 pp. 63-82, Warsaw 2016.
  • [8] Kowalski, M., Unstable Operation of the Turbine Aircraft Engine, Journal of Theoretical and Applied Mechanics, 51, 3, pp. 719-727, Warsaw 2013.
  • [9] Kułaszka, A., Szczepankowski, A.: Technical Minutes from Research, Air Force Institute of Technology, Warsaw 2007-2017.
  • [10] Łapucha, R., Combustion chambers of turbo-jet engines. Processes, calculations, tests, Instytut Lotnictwa, Warszawa 2004.
  • [11] Majka, H., Sieniawski, J., Investigation of kinetic phenomena and coagulation of the γ' phase in the EI-876 superalloy, Archives of Science on Materials, Vol. 4, No. 4, pp. 237-254, 1998.
  • [12] Mikułowski, B., Heat-resistant alloys and high-temperature creep resistant superalloys, Wydawnictwo Akademii Górniczo-Hutniczej, Krakow 1997.
  • [13] Paton, B., High-temperature creep resistance of cast nickel-base alloys; corrosion protection thereof (in Russian), Naukowa Dumka, Kijew 1997.
  • [14] Pawlak, W., Błachnio, J., Non-uniformity of the combustor exit flow temperature in front of the gas turbine, Acta Mechanica et Automatica, Vol. 8, No. 4, pp. 209-213, 2014.
  • [15] Sieniawski, J., Criteria and methods for acceptance of materials for components of avionic turbojet engines, Technical University of Rzeszow, 1995.
  • [16] Spychała, J., Błachnio, J., Pawlak, W., Kułaszka, A., Assessment of technical condition demonstrated by gas turbine blades by processing of images for their surfaces, Journal of KONBIN, No. 1 (21), pp. 41-50, 2012.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc9b76df-9025-4578-9176-251cc32dcf1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.