PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Investigation into Increasing the Motor-Drivable Current Using a Thermoelectric Cooling Module

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To enhance the performance of humanoids, mobile robots and manipulators, motors are desired to be able to provide high torque without relying on gears. To be able to drive joint motors with high output, the current value that can flow needs to be increased. However, the heat generated by the high current drive can cause motor failure, so cooling is necessary. We used thermoelectric cooling as a new cooling method for high-power drive of motors. By developing a thermoelectric cooling module for motors and conducting experiments, the effectiveness of thermoelectric cooling was verified. In the experiment, the motor was kept running at a high current for a long period of time. The comparison with the motor alone or with water cooling showed that the thermoelectric cooling module can significantly reduce the rise in temperature of the motor. Furthermore, based on the results of the voltage value measurements, it was expected that the increase in coil resistance due to higher coil temperatures would be kept lower than in other cases. The effect on rise in internal temperature was also considered to be greater than that of water cooling. These experimental results show that the thermoelectric cooling module can be used to increase the upper limit of the current at which the motor is continuously driven.
Słowa kluczowe
Wydawca
Rocznik
Strony
279--289
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Department of System Design Engineering, Keio University, Yokohama, Japan
  • Department of System Design Engineering, Keio University, Yokohama, Japan
Bibliografia
  • Alencar Almeida, C. H., Da Rocha Souto, C., Veronese, J. P. and Carlos de Oliveira Custódio, J. (2015). Characterization of thermoelectric cell for electric power generation. In: IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, Pisa, Italy, 2015, pp. 1358–1362.
  • Belovski, I., Ivanov, K., Aleksandrov, A. and Aleksandrova, I. (2021). Regression Model of a Thermoelectric Generator based on Peltier Modules. In: 17th Conference on Electrical Machines, Drives and Power Systems (ELMA), Sofia, Bulgaria, 2021, pp. 1–5, 2021.
  • Guizzo, E. (2019). By leaps and bounds: An exclusive look at how Boston dynamics is redefining robot agility. IEEE Spectrum, 56(12), pp.34–39.
  • Gwoździewicz, M. and Zawilak, J. (2016). Single-Phase Line Start Permanent Magnet Synchronous Motor with Skewed Stator. Power Electronics and Drives, 1(2), pp. 187–194.
  • Katsura, S., Irie, K. and Ohishi, K. (2008). Wideband Force Control by Position-Acceleration Integrated Disturbance Observer. IEEE Transactions on Industrial Electronics, 55(4), pp. 1699–1706.
  • Katsura, S., Matsumoto, Y. and Ohnishi, K. (2003). Modeling of force sensing and validation of disturbance observer for force control. IEEE Transactions on Industrial Electronics, 54(1), pp. 530–538.
  • Kawaharazuka, K., Hiraoka, N., Tsuzuki, K., Onitsuka, M., Asano, Y., Okada, K., Kawasaki, K. and Inaba, M. (2020). Estimation and Control of Motor Core Temperature With Online Learning of Thermal Model Parameters: Application to Musculoskeletal Humanoids. IEEE Robotics and Automation Letters, 5(3), pp.4273–4280.
  • Kim, D., Ahn, J., Campbell, O., Paine, N. and Sentis, L. (2018). Investigations of a Robotic Test Bed With Viscoelastic Liquid Cooled Actuators. IEEE/ASME Transactions on Mechatronics, 23(6), pp. 2704–2714.
  • Kumagai, I., Noda, S., Nozawa, S., Kakiuchi, Y., Okada, K. and Inaba, M. (2014). Whole body joint load reduction control for high-load tasks of humanoid robot through adapting joint torque limitation based on online joint temperature estimation. In: IEEE-RAS International Conference on Humanoid Robots, Madrid, Spain, 2014, pp. 463–468.
  • Kumar, B. V. R. and Kumar, K. S. (2016). Design of a new Dual Rotor Radial Flux BLDC motor with Halbach array magnets for an electric vehicle. In: IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, India, 2016, pp. 1–5.
  • Liu, K., Yin, M., Hua, W., Ma, Z., Lin, M. and Kong, Y. (2018). Design and Analysis of Halbach Ironless Flywheel BLDC Motor/Generators. IEEE Transactions on Magnetics, 54(11), pp.1–5.
  • Nizam, M., Waloyo, H. T., Mujianto, A., Inayati and Purwanto, A. (2014). Brushless DC motor torque improvement with mgnetic material stator core. In: International Conference on Electrical Engineering and Computer Science (ICEECS), Kuta, Bali, Indonesia, 2014, pp. 158–162.
  • Pourkiaei, S. M., Ahmadi, M. H., Sadeghzadeh, M., Moosavi, S., Pourfayaz, F., Chen, L., Pour Yazdi, M. A. and Kumar, R. (2019). Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials. Energy, 186, pp. 1–17.
  • Quintal-Palomo, R., Dybkowski, M. and Gwoździewicz, M. (2016). Parametric Analysis for the Design of a 4 Pole Radial Permanent Magnet Generator for Small Wind Turbines. Power Electronics and Drives, 1(2), pp. 175–186.
  • Ramesh, P. and Lenin, N. C. (2019). High Power Density Electrical Machines for Electric Vehicles— Comprehensive Review Based on Material Technology. IEEE Transactions on Magnetics, 55(11), pp.1–21.
  • Sarac, V. and Stefanov, G. (2020). Various Rotor Topologies of Line-Start Synchronous Motor for Efficiency Improvement. Power Electronics and Drives, 5(1), pp. 83–95.
  • Seok, S., Wang, A., Chuah, M. Y., Hyun, D. J., Lee, J., Otten, D. M., Lang, J. H. and Kim, S. (2015). Design Principles for Energy-Efficient Legged Locomotion and Implementation on the MIT Cheetah Robot. IEEE/ASME Transactions on Mechatronics, 20(3), pp. 1117–1129.
  • Sevinchan, E., Dincer, I. and Lang, H. (2018). A review on thermal management methods for robots. Applied Thermal Engineering, 140, pp.799–813.
  • Siyang, L., Lam, K. H. and Cheng, K. W. E. (2016). Development of a motor waste heat power generation system based on thermoelectric generators. In: International Symposium on Electrical Engineering (ISEE), Hong Kong, China, 2016, pp. 1–5.
  • Toren, M. and Mollahasanoglu, H. (2021). Investigation of Thermoelectric Cooler System Effect on Induction Motor Performance. In: 17th Conference on Electrical Machines, Drives and Power Systems (ELMA), Sofia, Bulgaria, 2021, pp. 1–4.
  • Urata, J., Nakanishi, Y., Okada, K. and Inaba, M. (2010). Design of high torque and high speed leg module for high power humanoid. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 2010, pp. 4497–4502.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc943642-ab8f-4375-a6a5-9b1787469c26
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.