PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The study of temperature measurement based on the transmission of fixed wavelengths for helical long-period grating

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research involves a fixed wavelength and dual-wavelength ratio temperature measurement for helical long-period grating. There are two resonant dips near 1475 and 1520 nm, with the pitch length 782 μm. The temperature sensitivity of resonance wavelengths is about 0.06 nm/°C. Both theoretical simulation and experiment results show that the transmission of a fixed wavelength linearly changes with the temperature. It has a high application value for measuring temperature. Besides, the dual-wavelength ratio is studied to eliminate the influence of light source. The temperature sensitivity of transmission intensity ratio of I1469.6nm/I0 and I1469.6nm/I1526.5nm are about 1.0076/°C and 0.0155/°C, respectively, so the dual-wavelength ratio is more practical. And the 0.0155 times intensity change could be much more easily measured than the 0.06 nm wavelength change for each degree Celsius. So the dual-wavelength ratio of the helical long-period gratings is very suitable for temperature sensors.
Czasopismo
Rocznik
Strony
129--137
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
  • Key Laboratory of Micro Nano Optoelectronic Devices and Intelligent Perception Systems, School of Electronic Information and Engineering, Yangtze Normal University, Chongqing, 408100, China
autor
  • Key Laboratory of Micro Nano Optoelectronic Devices and Intelligent Perception Systems, School of Electronic Information and Engineering, Yangtze Normal University, Chongqing, 408100, China
autor
  • Key Laboratory of Micro Nano Optoelectronic Devices and Intelligent Perception Systems, School of Electronic Information and Engineering, Yangtze Normal University, Chongqing, 408100, China
Bibliografia
  • [1] VENGSARKAR A.M., LEMAIRE P.J., JUDKINS J.B., BHATIA V., ERDOGAN T., SIPE J.E., Long-period fiber gratings as band-rejection filters, Journal of Lightwave Technology 14(1), 1996, pp. 58–65, DOI: 10.1109/50.476137.
  • [2] BHATIA V., VENGSARKAR A.M., Optical fiber long-period grating sensors, Optics Letters 21(9), 1996, pp. 692–694, DOI: 10.1364/OL.21.000692.
  • [3] SHU X.W., ZHANG L., BENNION I., Sensitivity characteristics of long-period fiber gratings, Journal of Lightwave Technology 20(2), 2002, pp. 255–266, DOI: 10.1109/50.983240.
  • [4] GAO R., JIANG Y., JIANG L., Multi-phase-shifted helical long period fiber grating based temperature-insensitive optical twist sensor, Optics Express 22(13), 2014, pp. 15697–15709, DOI: 10.1364/OE.22.015697.
  • [5] ZHANG L., LIU Y., ZHAO Y., WANG T., High sensitivity twist sensor based on helical long-period grating written in two-mode fiber, IEEE Photonics Technology Letters 28(15), 2016, pp. 1629–1632, DOI: 10.1109/LPT.2016.2555326.
  • [6] ZHANG H.L., ZHANG W.G., CHEN L., XIE Z.D., ZHANG Z., YAN T.Y., WANG B., Bidirectional torsion sensor based on a pair of helical long-period fiber gratings, IEEE Photonics Technology Letters 28(15), 2016, pp. 1700–1702, DOI: 10.1109/LPT.2016.2533478.
  • [7] WANG P., LI H., Helical long-period grating formed in a thinned fiber and its application to a refractometric sensor, Applied Optics 55(6), 2016, pp. 1430–1434, DOI: 10.1364/AO.55.001430.
  • [8] SUN B., WEI W., LIAO C.R., ZHANG L., ZHANG Z.X., CHEN M.Y., WANG Y.P., Automatic arc discharge-induced helical long period fiber gratings and its sensing applications, IEEE Photonics Technology Letters 29(11), 2017, pp. 873–876, DOI: 10.1109/LPT.2017.2693361.
  • [9] KOPP V.I., CHURIKOV V.M., ZHANG G., SINGER J., DRAPER C.W., CHAO N., NEUGROSCHL D., GENACK A.Z., Single- and double-helix chiral fiber sensors, Journal of the Optical Society of America B 24(10), 2007, pp. A48–A52, DOI: 10.1364/JOSAB.24.000A48.
  • [10] XIAN L.L., WANG P., LI H.P., Power-interrogated and simultaneous measurement of temperature and torsion using paired helical long-period fiber gratings with opposite helicities, Optics Express 22(17), 2014, pp. 20260–20267, DOI: 10.1364/OE.22.020260.
  • [11] XU C.C., JIANG C., LIU Y.Q., High diffraction order cladding modes of helical long-period gratings inscribed by CO2 laser, Applied Optics 59(10), 2020, pp. 3086–3092, DOI: 10.1364/AO.387578.
  • [12] WONG G.K.L., KANG M.S., LEE H.W., BIANCALANA F., CONTI C., WEISS T., RUSSELL P.ST.J., Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber, Science. 337(6093), 2012, pp. 446–449, DOI: 10.1126/science.1223824.
  • [13] FU C.L., LIU S., BAI Z.Y., HE J., LIAO C.R., WANG Y., LI Z.L., ZHANG Y., YANG K.M., YU B., WANG Y.P., Orbital angular momentum mode converter based on helical long period fiber grating inscribed by hydrogen–oxygen flame, Journal of Lightwave Technology 36(9), 2018, pp. 1683–1688, DOI: 10.1109/JLT.2017.2787120.
  • [14] ZHANG Y., BAI Z.Y., FU C.L., LIU S., TANG J., YU J., LIAO C.R., WANG Y., HE J., WANG Y.P., Polarization-independent orbital angular momentum generator based on a chiral fiber grating, Optics Letters 44(1), 2019, pp. 61–64, DOI: 10.1364/OL.44.000061.
  • [15] FU C.L., WANG Y.P., BAI Z.Y., LIU S., ZHANG Y., LI Z.L., Twist-direction-dependent orbital angular momentum generator based on inflation-assisted helical photonic crystal fiber, Optics Letters 44(2), 2019, pp. 459–462, DOI: 10.1364/OL.44.000459.
  • [16] ZHAO H., WANG P., YAMAKAWA T., LI H.P., All-fiber second-order orbital angular momentum generator based on a single-helix helical fiber grating, Optics Letters 44(21), 2019, pp. 5370–5373, DOI: 10.1364/OL.44.005370.
  • [17] HE X.D., TU J.J., WU X.W., GAO S., SHEN L., HAO C.L., FENG Y.H., PING W.L., LI Z.H., All-fiber third-order orbital angular momentum mode generation employing an asymmetric long-period fiber grating, Optics Letters 45(13), 2020, pp. 3621–3624, DOI: 10.1364/OL.394333.
  • [18] MELLE S.M., LIU K., MEASURES R.M., A passive wavelength demodulation system for guided-wave Bragg grating sensors, IEEE Photonics Technology Letters 4(5), 1992, pp. 516–518, DOI: 10.1109/68.136506.
  • [19] DAVIS M.A., KERSEY A.D., All-fibre Bragg grating strain-sensor demodulation technique using a wavelength division coupler, Electronics Letters 30(1), 1994, pp. 75–77, DOI: 10.1049/el:19940059.
  • [20] SANO Y., YOSHINO T., Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors, Journal of Lightwave Technology 21(1), 2003, pp. 132–139, DOI: 10.1109/JLT.2003.808620.
  • [21] IVANOV O.V., Propagation and coupling of hybrid modes in twisted fibers, Journal of the Optical Society of America A 22(4), 2005, pp. 716–723, DOI: 10.1364/JOSAA.22.000716.
  • [22] SHVETS G., TRENDAFILOV S., KOPP V.I., NEUGROSCHL D., GENACK A.Z., Polarization properties of chiral fiber gratings, Journal of Optics A: Pure and Applied Optics 11(7), 2009, article 074007, DOI: 10.1088/1464-4258/11/7/074007.
  • [23] NAPIORKOWSKI M., URBANCZYK W., Role of symmetry in mode coupling in twisted microstructured optical fibers, Optics Letters 43(3), 2018, pp. 395–398, DOI: 10.1364/OL.43.000395.
  • [24] ERDOGAN T., Fiber grating spectra, Journal of Lightwave Technology 15(8), 1997, pp. 1277–1294, DOI: 10.1109/50.618322.
  • [25] NG M.N., CHIANG K.S., Thermal effects on the transmission spectra of long-period fiber gratings, Optics Communications 208(4–6), 2002, pp. 321–327, DOI: 10.1016/S0030-4018(02)01597-3.
  • [26] ERDOGAN T., Cladding-mode resonances in short- and long-period fiber grating filters, Journal of the Optical Society of America A 14(8), 1997, pp. 1760–1773, DOI: 10.1364/JOSAA.14.001760.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc8ff1a2-5642-4c4d-80b3-60c263e2e436
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.