Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In lunar and deep-space farming, saline stress (SS) induced by human urine in hydroponically grown vegetables constitutes one of the prime concerns in its utilization for plant nutrition. Therefore, an indoor hydroponic trial was performed to assess the effectiveness of foliar feeding of citric acid (CA, 50 μM as two sprays at 26 days and 38 days after germination using a common hand-held sprayer) and the control treatment (a standardized plant nutrient with 10% synthetic urine replacement and 50 mM NaCl-induced SS) for sugar beets. The response variables included vegetative growth traits of sugar beets, such as the height of plants and stem girth along with lengths and fresh weights of leaves, roots, and whole plants. The recorded findings demonstrated that at the fourth week of germination, CA foliar feeding did not produce a statistically significant impact on the leaf width and plant height of sugar beets. However, CA produced 17%, 14%, and 35% taller plants at the six, eight, and ten weeks of germination, respectively. Likewise, the control treatment recorded 32% and 30% smaller leaf widths of sugar beets compared to the CA foliar feeding treatment at the 8 th and 10th weeks of germination, respectively. In addition, it was found that CA foliar feeding was effective in enhancing the stem length and root length by 16% and 38%, respectively compared to the control under SS. Moreover, CA foliar feeding enhanced stem diameter (26%) and root fresh weight (29%) compared to the control treatment. As far as leaf length and fresh weight along with whole plant fresh weight were concerned, foliar feeding of CA demonstrated its effectiveness by producing 32%, 21%, and 42% greater values, respectively compared to the control treatment. Therefore, CA foliar feeding could serve as a potent strategy to mitigate the deleterious effects of saline stress and boost the vegetative growth of hydroponically grown sugar beets.
Czasopismo
Rocznik
Tom
Strony
221--230
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
- Department of Chemical Engineering, Louisiana Tech University, Ruston LA 71270, USA
autor
- Department of Chemical Engineering, Louisiana Tech University, Ruston LA 71270, USA
autor
- Department of Materials Engineering, National University of Sciences and Technology, Pakistan
autor
- Department of Chemical Engineering, Louisiana Tech University, Ruston LA 71270, USA
autor
- Department of Chemical Engineering, Louisiana Tech University, Ruston LA 71270, USA
Bibliografia
- 1. Abbas, R.N., Iftikhar, A., Iqbal, A., Erden, Z., Alqahtani, M.D., Almutairi, K.F., Iqbal, M. A. 2024. Counteracting heat, salinity, and osmotic stresses by reconciling seed size and sowing depth for bolstering germination and seedling growth of cluster bean (Cyamposis tetragonoloba L. Taub.). Polish Journal of Environmental Studies, https://doi.org/10.15244/pjoes/195278
- 2. Ahmad Z., Khaliq A., Waraich E.A., Artyszak A., Zaman Q., Abbasi A., Iqbal M.A. 2023. Exogenously applied silicon and zinc mitigates salt stress by improving leaf pigments and antioxidant activities in canola cultivars. Silicon, 15, 5435–5444. https://doi.org/10.1007/s12633-023-02446-y
- 3. Alemayehu Y.A., Demoz A.A., Degefu M.A., Gebreeyessus G.D., Demessie S.F. 2020. Effect of human urine application on cabbage production and soil characteristics. Journal of Water, Sanitation and Hygiene for Development, 10(2), 262–275.
- 4. Aslam A., Nawaz H., Khan A., Ghaffar R., Abbas G. 2022. Effect of exogenous application of citric acid on growth of maize (Zea mays L.) under sodium fluoride stress. Fluoride, 56(1), 329–350.
- 5. Attia M.S., Osman M.S., Mohamed A.S., Mahgoub H.A., Garada M.O., Abdelmouty E.S., Abdel Latef A.A.H. 2021. Impact of foliar application of chitosan dissolved in different organic acids on isozymes, protein patterns and physio-biochemical characteristics of tomato grown under salinity stress. Plants, 10(2), 388. https://doi.org/10.3390/plants10020388
- 6. Barbosa A.S., Silva A.O., Sousa G.G., Souza M.V.P., Freire M.H., Goes G.F. et al. 2024. Brackish water, phosphate fertilization and trichoderma in the agronomic performance of beet crops. Agronomy, 14(6), 1306. https://doi.org/10.3390/agronomy14061306
- 7. Behairy R.T., El-Hamamsy S.M.A., El-khamissi H.A.Z. 2017. Alleviation of salinity stress on Fenugreek seedling growth using salicylic acid, citric acid and proline. Middle East Journal of Agricultural Research, 6(2), 474–483.
- 8. Bouatra S., Aziat F., Mandal R., Guo A.C., Wilson M.R., Knox C. 2013. The human urine metabolome. PLoS ONE, 8(9), e73076. https://doi.org/10.1371/journal.pone.0073076
- 9. Choudhary S.K., Kumar V., Singhal R.K., Bose B., Chauhan J., Alamri S., Siddiqui M.H., Javed T., Shabbir R., Rajendran K., Iqbal M.A. 2021. Seed priming with Mg(NO3)2 and ZnSO4 salts triggers the germination and growth attributes synergistically in wheat varieties. Agronomy, 11, 2110. https://doi.org/10.3390/agronomy11112110
- 10. Darandeh N., Hadavi E. 2012. Effect of pre-harvest foliar application of citric acid and malic acid on chlorophyll content and post-harvest vase life of Lilium cv. Brunello. Frontier in Plant Science, 2, 106.
- 11. El-Tohamy W.A., El-Abagy H.M., Badr M.A., Gruda N. 2013. Drought tolerance and water status of bean plants (Phaseolus vulgaris L.) as affected by citric acid application. Journal of Applied Botany and Food Quality, 86, 212–216.
- 12. Gao Y., Miao C.Y., Mao L., Zhou P., Jin Z.G., Shi W.J. 2010. Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium resistant strain and citric acid. Journal of Hazardous Materials, 18, 771–777.
- 13. Gomez K.A., Gomez A.A. 1984. Statistical procedures for Agricultural Research. 2nd Edition, John Wiley and Sons, New York.
- 14. Hakim A.R., Juraimi A.S., Rezaul Karim S.M., Khan M.S.I., Islam M.S., Choudhury M.K., Soufan W., Al-harby H. 2021. Effectiveness of herbicides to control rice weeds in diverse saline environments. Sustainability, 13, 2053. https://doi.org/10.3390/su13042053
- 15. Hossain M.A., Khatun M.S., Hosen M., Sayed Z.I., Islam M.R., Chowdhury M.K., Iqbal M.A., Al-Ashkar I., Erden Z., Toprak C.C., Sabagh A.E., Islam M.S. 2024. Citric acid alleviated salt stress by modulating photosynthetic pigments, plant water status, yield and nutritional quality of black gram [Vigna mungo (L.) Hepper]. Legume Research, 10.18805/LRF-820.
- 16. Hu L., Zhang Z., Xiang Z., Yang Z. 2016. Exogenous application of citric acid ameliorates the adverse effect of heat stress in Tall Fescue (Lolium arundinaceum L.). Frontiers in Plant Science, 7, 179.
- 17. Hussein M.M., El-Saady A., Gobarah M., Abo El-Khier A. 2020. Nutrient content and growth responses of sugar beet plants grown under salinity condition to citric acid and algal extract. Egyptian Journal of Agronomy, 42(2), 209–224. https://doi.org/10.21608/agro.2020.38200.1223
- 18. Iqbal M.A., Asif I., Kashif A., Haider A, Khan R.D., Bilal A., Faisal N., Ali R. 2015. Integration of forage sorghum and by-products of sugarcane and sugar beet industries for ruminant nutrition: A review. Global Veterinaria, 14(5), 752–760.
- 19. Iqbal M.A., Saleem A.M. 2015. Sugar beet potential to beat sugarcane as a sugar crop in Pakistan. American-Eurasian Journal of Agricultural & Environmental Sciences, 15 (1), 36–44.
- 20. Jafari, N., Hadavi, E. (2012) Growth and essential oil yield of dill (Anethum graveolens) as affected by foliar sprays of citric acid and malic acid. Acta Hort. 955, 287–290.
- 21. Jurga A., Janiak K., Wizimirska A., Chochura P., Miodoński S., Muszyński-Huhajło M., Ratkiewicz K., Zięba B., Czaplicka-Pędzich M., Pilawka T. 2021. Resource recovery from synthetic nitrified urine in the hydroponic cultivation of lettuce (Lactuca sativa Var. capitata L.). Agronomy, 11(11), 2242. https://doi.org/10.3390/agronomy11112242
- 22. Khatun M.R., Mukta R.H., Islam M.A., Huda A.N. 2019. Insight into citric acid-induced chromium detoxification in rice (Oryza sativa L). International Journal of Phytoremediation, 21(12), 1234–1240.
- 23. Maury T., Loubet P., Serrano S.M., Gallice A., Sonnemann G. 2020. Application of environmental life cycle assessment (LCA) within the space sector: a state of the art. Acta Astronaut, 170, 122–135.
- 24. Pradhan S.K., Holopainen J.K., Weisell J., Heinonen-Tanski H. 2010. Human Urine and wood ash as plant nutrients for red beet (Beta vulgaris) cultivation: Impacts on yield quality. Journal of Agriculture and Food Chemistry, 58, 2034–2039.
- 25. Sadak M.Sh., Orabi, S.H. 2015. Improving thermo tolerance of wheat plant by foliar application of citric acid or oxalic acid. International Journal of Chemical Technology and Research, 8(1), 333–345.
- 26. Sagar A., Hossain M.A., Uddin M.N., Tajkia J.E., Mia M.A., Iqbal M.A. 2023. Genotypic divergence, photosynthetic efficiency, sodium extrusion, and osmoprotectant regulation conferred salt tolerance in sorghum. Phyton-International Journal of Experimental Botany, 92(8): 2349–2368. https://doi.org/10.32604/phyton.2023.028974
- 27. Shaddam M.O., Islam M.R., Ditta A., Ismaan H.N., Iqbal M.A., Al-Ashkar A. 2024. Genotypic divergences of important mungbean varieties in response to salt stress at germination and early seedling stage. Polish Journal of Environmental Studies, 33(5), 5857–5868. http://dx.doi.org/10.15244/pjoes/183567
- 28. Simha P., Courtney C., Randall D.G. 2024. An urgent call for using real human urine in decentralized sanitation research and advancing protocols for preparing synthetic urine. Frontiers in Environmental Science, 12, 1367982. https://doi.org/10.3389/fenvs.2024.1367982
- 29. Subbarao G.V., Wheeler R.M., Levine L.H., Stutte G.W. 2001. Glycine betaine accumulation, ionic and water relations of red-beet at contrasting levels of sodium supply. Journal of Plant Physiology, 158, 767–776. https://doi.org/10.1078/0176-1617-00309
- 30. Sun Y.L., Hong S.K. 2011. Effects of citric acid as an important component of the responses to saline and alkaline stress in the halophyte Leymus Chinensis (Trin.). Plant Growth Regululation, 64, 129–139.
- 31. Sorour S., Amer M.M., El Hag D., Hasan E.A., Awad M., Kizilgeci F., Ozturk F., Iqbal M.A., El Sabagh A. 2021. Organic amendments and nano-micronutrients restore soil physico-chemical properties and boost wheat yield under saline environment. Fresenius Environmental Bulletin, 30(9), 10941–10950.
- 32. Tarikuzzaman M., Iqbal M.A., Lynam J.G. 2024. Direct Contact Membrane Distillation of Artificial Urine for Sugar Beet Production in a Hydroponic System. Journal of Ecological Engineering, 25(10), 252–260. https://doi.org/10.12911/22998993/192174
- 33. Tyburski J., Nowakowski M., Nelke R., Żurek M. 2024. Optimizing an organic method of sugar beet cultivation and yield gap decrease in Northern Poland. Agriculture, 14(6), 937. https://doi.org/10.3390/agriculture14060937
- 34. Wright H.C., Fountain L., Moschopoulos A., Ryan A.J., Daniell T.J., Cullen D.C., Shaughnessy B., Cameron D.D. 2023. Space controlled environment agriculture offers pathways to improve the sustainability of controlled environmental agriculture on Earth. Nature Food, 4, 648–653. https://doi.org/10.1038/s43016-023-00819-5
- 35. Yang L., Ma C., Wang L., Chen S., Li H. 2012. Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition line M14. Journal of Plant Physiology, 169, 839–850. https://doi.org/10.1016/j.jplph.2012.01.023
- 36. Yasir T.A., Khan A., Skalicky M., Wasaya A., Rehmani M.I.A., Sarwar N., Mubeen K., Aziz M., Hassan M.M., Hassan F.A.S., Iqbal M.A. 2021) Exogenous sodium nitroprusside mitigates salt stress in lentil (Lens culinaris Medik.) by affecting the growth, yield, and biochemical properties. Molecules, 26, 2576. https://doi.org/10.3390/molecules26092576
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc8fa864-18f0-4c09-b9b7-faa59400acaa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.