PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of metallic grid and fiber reinforced concrete strengthening on the shielding and impact resistance of concrete walls

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In modern society, an ever-increasing emphasis is placed on structural safety design that not only considers external loading but extends to reduced electromagnetic interference. Generally, studies only consider shielding effectiveness of strengthening method or materials, and few studies have considered the relationship between damaged areas and shielding effectiveness. Therefore, the influence of metallic grid parameters and fiber reinforced concrete (HSDC) on shielding effectiveness with and without impact loading are studied in this research. Concrete wall strengthening with four types of metallic grid and three thickness types of HSDC were considered. Moreover, the relationship between damaged area ratio and shielding effectiveness was evaluated utilizing the low-velocity drop-weight impact test. In specimens with metallic grid or HSDC, shielding effectiveness with strengthening layer (13.4-64.1%) or thickness (35.6-46.2%) increase and grid size (> 7.8%) decreased. Specimen strengthened by smaller than 55.1% and 101% of the free space area ratio of single and double layer, respectively, exhibit more than 40 dB shielding effectiveness. For the specimen strengthened with HSDC, shielding effectiveness increased with strengthening area, except smaller than 6%. The smallest metallic grid and the thickest HSDC strengthening specimen exhibited improved impact resistance and great shielding effectiveness after impact loading.
Rocznik
Strony
art. no. e109
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
  • School of Civil, Environmental and Architectural Engineering, Korea University, 125 Anam‑ro, Seongbuk‑gu, Seoul 02841, Republic of Korea
  • School of Civil, Environmental and Architectural Engineering, Korea University, 125 Anam‑ro, Seongbuk‑gu, Seoul 02841, Republic of Korea
  • COO‑WWS APAC Technical Sales Korea, Autodesk, Seoul 06164, Republic of Korea
  • School of Civil, Environmental and Architectural Engineering, Korea University, 125 Anam‑ro, Seongbuk‑gu, Seoul 02841, Republic of Korea
Bibliografia
  • 1. Guan H, Liu S, Duan Y, Cheng J. Cement based electromagnetic shielding and absorbing building materials. Cem Concr Compos. 2006;28:468-74.
  • 2. Shukla V. Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv. 2019;2019(1):1640-71.
  • 3. Choi JS, Yuan TF, Hong SH, Yoon YS. Evaluating of Electromagnetic shielding characteristics of reinforced concrete using reinforcing details. J Korean Soc Hazard Mitig. 2020;20(5):245-54.
  • 4. Wanasinghe D, Aslani F, Ma GW, Habibi D. Advancements in electromagnetic interference shielding cementitious composites. Constr Build Mater. 2020;231:1-23.
  • 5. Yuan TF, Choi JS, Kim SK, Yoon YS. Assessment of steel slag and steel fiber to control electromagnetic shielding in high-strength concrete. KSCE J Civ Eng. 2021;25:920-30.
  • 6. Yuan TF, Choi JS, Hong SH, Yoon YS. Enhancing the electromagnetic shielding and impact resistance of a reinforced concrete wall for protective structures. Cem Concr Compos. 2021;122:104148.
  • 7. Mazzoli A, Corinaldesi V, Donnini J, Di Perna C, Micheli D, Vricella A, Pastore R, Bastianelli L, Moglie F, Mariani Priminai V. Effect of graphene oxide and metallic fibers on the electromagnetic shielding effect of engineered cementitious composites. J Build Eng. 2018;18:33-9.
  • 8. Li Y, Yu M, Yang P, Fu J. Enhanced microwave absorption property of Fe Nanopaticles encapsulated within reduced graphene oxide with different thicknesses. Ind Eng Chem Res. 2017;56:8872-9.
  • 9. Jung MJ, Lee YS, Hong SG, Moon JY. Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE). Cem Concr Res. 2020;131:106017.
  • 10. Bae H, Ahmad T, Rhee I, Chang Y, Jin S-U, Hong S. Carbon-coated iron oxide nanoparticles as contrast agents in magnetic resonance imaging. Nanoscale Res Lett. 2012;7(44):1-5.
  • 11. Ozturk M, Akgol O, Sevim UK, Karaaslan M, Demirci M, Unal E. Experimental work on mechanical, electromagnetic and microwave shielding effectiveness properties of mortar containing electric arc furnace slag. Constr Build Mater. 2018;165:58-63.
  • 12. Khalaf MA, Ban CC, Ramli M, Ahmed NM, Sern LH, Khaleel HA. Physicomechanical and gamma-ray shielding properties of high-strength heavyweight concrete containing steel furnace slag aggregate. J Build Eng. 2020;30:101306.
  • 13. Tyagi G, Singhal A, Routroy S, Bhunia D, Lahoti M. A review on sustainable utilization of industrial wastes in radiation shielding concrete. Mater Today: Proc. 2020;32(4):746-51.
  • 14. Mishra M, Singh AP, Gupta V, Chandra A. Tunable EMI shielding effectiveness using new exotic carbon: polymer composites. J Alloys Compd. 2016;688:399-403.
  • 15. Yao WL, Xiong GX, Yang Y, Huang HQ, Zhou YF. Effect of silica fume and colloidal graphite additions on the EMI shielding effectiveness of nickel fiber cement based composites. Constr Build Mater. 2017;150:825-32.
  • 16. Kamil Z, Tomasz P, Andrezej G. Influence of polymer modification on the microstructure of shielding concrete. Materials. 2020;13(3):498.
  • 17. Xu H, Li Y, Han XS, Cai HZ, Gao F. Carbon black enhanced wood-plastic composites for high-performance electromagnetic interference shielding. Mater Lett. 2021;285:129077.
  • 18. Yoon HN, Jang D, Lee HK, Nam IW. Influence of carbon fiber additions on the electromagnetic wave shielding characteristics of CNT-cement composites. Constr Build Mater. 2021;269:121238.
  • 19. Zhou BH, Cheng G, Chen B, Chen ZM. Experimental investigation of EMP shielding effectiveness of reinforced-concrete cell model, CEEM’2000 (IEEE Cat. No.00EX402). 6703576 (2000) 296-300.
  • 20. Sneh A, Thakur P, Yadav K, Goyal R, Gupta M. An experimental analysis of EMI shielding effectiveness using multi layered metal meshed reinforced sustainable foam. J Eng Res Tech. 2020;9(2):662-5.
  • 21. Jung MJ, Lee YS, Hong SG. Effect of incident area size on estimation of EMI shielding effectiveness for ultra-high-performance concrete with carbon nanotubes. IEEE Access. 2019;26(1):183105-17.
  • 22. Yilmaz T, Kirac N, Anil O, Erdem T, Kacaran G. Experimental investigation of impact behavior of RC slab with different reinforcement ratios. Struct Eng. 2020;24(1):241-54.
  • 23. ASTM C150, Standard Specification for Portland Cement, ASTM International, West Conshohocken, PA, 2007, pp. 1-8.
  • 24. Yuan TY, Lee JY, Min KH, Yoon YS. Experimental investigation on mechanical properties of hybrid steel and polyethylene fiber reinforced no-slump high-strength concrete. Int J Polym Sci. 2019;2019:4737384.
  • 25. Yuan TF, Lee JY, Yoon YS. Enhancing the tensile capacity of noslump high-strength high-ductility concrete. Cem Concr Compos. 2020;106:103458.
  • 26. Yuan TF, Hong SH, Shin HO, Yoon YS. Bond strength and flexural capacity of normal concrete beams strengthened with no-slump high-strength, high-ductility concrete. Materials. 2020;13(19):4218.
  • 27. Quintana S, de Blas JM, Pena J, Blanco J, Garcia LD, Pastor JM. Design and operation of a real-scale electromagnetic shielding evaluation system for reinforced composite construction materials. J Mater Civ Eng. 2018;30(8):04018162.
  • 28. Liu F, Lu X, Li YB, Yang J, Pan Z. Attenuation characteristics on high power microwave penetrating through reinforced concrete. Chin J Radio Sci. 2014;29(1):35-9.
  • 29. Micheli D, Marchetti M, Pastore R, Vricella A, Gradoni G, Moglie F, Mariani Primiani V. Shielding effectiveness of carbon nanotube reinforced concrete composites by reverberation chamber measurements. In: International Conference on Electromagnetics in Advanced Applications (ICEAA), 2015, pp. 145-148.
  • 30. Micheli D, Pastore R, Vricelaa A, Delfini A, Marchetti M, Santoni F. Chapeter 9- electromagnetic characterization of masterials by vector network analyzer experimental setup, spectroscopic methods for nanomaterials characterization (Micro and Nano Technologies), 2017, pp. 195-236.
  • 31. Pham TM, Hao Y, Hao H. Sensitivity of impact behaviour of RC beams to contact stiffness. Int J Impact Eng. 2018;112:155-64.
  • 32. Li HW, Chen WS, Hao H. Influence of drop weight geometry and interlayer on impact behavior of RC beams. Int J Impact Eng. 2019;131:222-37.
  • 33. Kim YH, Choi JS, Yuan TF, Yoon YS. Building-information-modeling based approach to simulate strategic location of shelter in place and its strengthening method. Materials. 2021;14(13):3456.
  • 34. Hyun SY, Kyoung JK, Lee HJ, Lee KW, Yook JG. Analysis of shielding effectiveness of reinforced concrete against high-altitude electromagnetic pulse. IEEE Tran Antennas Propag. 2014;56(6):1488-96.
  • 35. Lu HD, Zhu F, Li X, Tang YT. Shielding effectiveness of reinforced concrete toward electric arcs in pantograph catenary systems of metro. Chin J Radio Sci. 2016;31(6):1209-15.
  • 36. You BX, Deng WD, Li Y, Duan HQ. Influence of steel grid parameter on its shielding effectiveness for indoor distribution substation. J Shenzhen Inst Inform Tech. 2009;7(4):74-8.
  • 37. Liu F, Lu X, Li YB, Yang J, Pan Z. Attenuation characteristics on high power microwave penetrating through reinforcement nets. High Power Laser and Part Beams. 2012;24(11):2713-7.
  • 38. Giulio A, Antonio O, Stefano D. Shielding effects of reinforced concrete structures to electromagnetic fields due to GSM and UMTS systems. IEEE Trans Magn. 2003;39(3):1582-5.
  • 39. MIL-STD-188-125-1, High-altitude electro-magnetic pulse (HEMP) protection for ground-based C4I facilities performing critical, time urgent missions. Department of Defense Interface Standard (2005).
  • 40. Jang HJ, Song TS. Implementation of concrete block shielding effectiveness measurement system for RF shield. J Inst Electron Inf Commun Eng. 2018;55(12):85-91.
  • 41. Sadraie H, Khaloo A, Soltani H. Dynamic performance of concrete slabs reinforced with steel and GFRP bars under impact loading. Eng Struct. 2019;191:62-81.
  • 42. Hamid S, Alireza K, Hesam S. Dynamic performance of concrete slabs reinforced with steel and GFRP bars under impact loading. Eng Struct. 2019;191:62-81.
  • 43. Trevor DH, Frank JV. Behavior of steel fiber-reinforced concrete slabs under impact load. ACI Struct J. 2014;111(5):1213-23.
  • 44. Yoo DY, Kang MC, Choi HJ, Shin WS, Kim SH. Electromagnetic interference shielding of multi-cracked high-performance fiber-reinforced cement composites-Effects of matrix strength and carbon fiber. Constr Buil Mater. 2020;261:119949.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc87d7a7-ce86-48db-bdb7-ef2f5129ae2f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.