PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

XRD phase investigations of steam oxidized Fe and Ni rich Cr alloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work was to summarise XRD investigations performed after the tests carried out in steam oxidation conditions in the temperature range 700‒800°C for 3000 hours. In this work, two solid-solution strengthened alloys; Haynes® 230®, 617 alloy and two (γ’) gamma-prime strengthened alloys; 263 and Haynes® 282® and high alloyed steels rich in Cr: 309S, 310S and HR3C were exposed. The phase analyses were carried out using two techniques; Bragg-Brentano (BB) geometry and geometry of constant angle called grazing incidence α = 1° and α = 3°.
Słowa kluczowe
Rocznik
Strony
265--276
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Foundry Research Institute, ul. Zakopiańska 73, 30-418 Krakow, Poland
autor
  • AGH University Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • 1. Wright I.G., A. Sabau, R. Dooley. 2008. “Development of strain in oxides grown in steam tubes”. Materials Science Forum 595–598 : 387–395.
  • 2. Technology Roadmap: High-efficiency, low-emissions coal-fired power generation. 2012. Paris: International Energy Agency (IEA).
  • 3. Dudziak T., V. Deodeshmukh, L. Backert, N. Sobczak, M. Witkowska, W. Ratuszek, K. Chruściel, A. Zieliński, J. Sobczak, G. Bruzda. 2017. “Phase investigations under steam oxidation process at 800°C for 1000 h of advanced steels and Ni-based alloys”. Oxidation of Metals 87 (1‒2) : 139‒158.
  • 4. Othman N.K., N. Othman, J. Zhang, D.J. Young. 2009. “Effects of water vapour on isothermal oxidation of chromia-forming alloys in Ar/O2 and Ar/H2 atmospheres”. Corrosion Science 51 (12) : 3039‒3049.
  • 5. Pujilaksono B., T. Jonsson, H. Heidari, M. Halvarsson, J.-E. Svensson, L.-G. Johansson. 2011. “Oxidation of binary FeCr alloys (Fe–2.25Cr, Fe–10Cr, Fe–18Cr and Fe–25Cr) in O2 and in O2 + H2O environment at 600°C”. Oxidation of Metals 75 (3–4) : 183–207.
  • 6. Evans H.E., A.T. Donaldson, T.C. Gilmour. 1999. “Mechanisms of breakaway oxidation and application to a chromia-forming steel”. Oxidation of Metals 52 (5–6) : 379–402.
  • 7. Bsat S., X. Huang. 2015. “Corrosion behaviour 310 stainless steel in superheated steam”. Oxidation of Metals 84 (5–6) : 621‒631.
  • 8. Saunders S.R.J., M. Monteiro, F. Rizzo. 2008. “The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review”. Progress in Materials Science 53 (5) : 775–837.
  • 9. Asteman H., K. Segerdahl, J.E. Svensson, L.G. Johansson. 2001. “The influence of water vapor on the corrosion of chromia-forming steels”. Materials Science Forum 369‒372 : 277‒286.
  • 10. Yang Z.G., G.G. Xia, J.W. Stevenson, P. Singh. 2005. Observations on the oxidation of Mn-modified Ni-base Haynes 230 alloy under SOFC exposure conditions. U.S. Department of Energy, PNNL-15304.
  • 11. Holcomb G.R., D.E. Alman. 2006. “Effect of manganese additions on the reactive evaporation of chromium in Ni-Cr alloys”. Scripta Materialia 54 (10) : 1821–1825.
  • 12. Sachitanand R., M. Sattari, J.-E. Svensson, J. Froitzheim. 2013. “Evaluation of the oxidation and Cr evaporation properties of selected FeCr alloys used as SOFC interconnects”. International Journal of Hydrogen Energy 38 (35) : 15328‒15334.
  • 13. Holcomb G.R., D.E. Alman. 2006. The effect of manganese additions on the reactive evaporation of chromium in Ni-Cr alloys. Albany Research Center, U.S. Department of Energy, DEO/ARC-05-002.
  • 14. Deodeshmukh V.P. 2013. “Long-term performance of high-temperature foil alloys in water vapor containing environment. Part I: Oxidation behavior”. Oxidation of Metals 79 (5‒6) : 567‒578.
  • 15. Pedrazzini S., D.J. Child, G. West, S.S. Doak, M.C. Hardy, M.P. Moody, P.A.J. Bagot. 2016. “Oxidation behaviour of a next generation polycrystalline Mn containing Ni-based superalloy”. Scripta Materialia 113 : 51‒54.
  • 16. Bjørheim T.S., A. Kuwabara, T. Norby. 2013. “Defect chemistry of rutile TiO2 from first principles calculations”. The Journal of Physical Chemistry C 117 (11) : 5919–5930.
  • 17. Du H.L., P.K. Datta, Z. Klusek, J.S. Burnell-Gray. 2004.“Nanoscale studies of the early stages of oxidation of a TiAl-base alloy”. Oxidation of Metals 62 (3‒4) : 175‒193.
  • 18. Kekare S.A., P.B. Aswath. 1997. “Oxidation of TiAl based intermetallics”. Journal of Materials Science 3 2 ( 9) : 2485‒2499.
  • 19. Cruchley S., H.E. Evans, M.P. Taylor, M.C. Hardy, S. Stekovic. 2013. “Chromia layer growth on a Nibased superalloy: Sub-parabolic kinetics and the role of titanium”. Corrosion Science 75 (October 2013) : 58–66.
  • 20. Chen J.H., P.M. Rogers, J.A. Little. 1997. “Oxidation behavior of several chromia-forming commercial nickelbase superalloys”. Oxidation of Metals 47 (5‒6) : 381–410.
  • 21. Kim D., C. Jang, W.S. Ryu. 2009. “Oxidation characteristics and oxide layer evolution of alloy 617 and Haynes 230 at 900°C and 1100°C”. Oxidation of Metals 71 (5‒6) : 271–293.
  • 22. Taylor M.P., H.E. Evans, S. Stekovic, M.C. Hardy. 2012.“The oxidation characteristics of the Ni-based superalloy, RR1000, at temperatures 700‒900°C”. Materials at High Temperatures 29 : 145‒150.
  • 23. Fry A., S. Osgerby, M. Wright. 2002. Oxidation of alloys in steam environments – A Review. United Kingdom: NPL Materials Centre.
  • 24. Bauer R., M. Baccalaro, L.P.H. Jeurgens, M. Pohl, E.J. Mittemeijer. 2008. “Oxidation behavior of Fe–25Cr–20Ni–2.8Si during isothermal oxidation at 1,286 K; Lifetime Prediction”. Oxidation of Metals 69 (3‒4) : 265‒285.
  • 25. Evans H.E., D.A. Hilton, R.A. Holm, S.J. Webster. 1983. “Influence of silicon additions on the oxidation resistance of a stainless steel”. Oxidation of Metals 19 (1‒2) : 1‒18.
  • 26. Henry S., A. Galerie, L. Antoni. 2001. “Abnormal oxidation of stabilized ferritic stainless steels in water vapor”. Materials Science Forum 369‒372 : 353‒360.
  • 27. Ennis P., W. Quadakkers. 2007. “Implications of steam oxidation for the service life of high-strength martensitic steel components in high-temperature plant”. International Journal of Pressure Vessels and Piping 84 (1‒2) : 82‒87.
  • 28. Jonsson T., S. Karlsson, H. Hooshyar, M. Sattari, J. Liske, J.-E. Svensson, L.-G. Johansson. 2016. “Oxidation after breakdown of the chromium-rich scale on stainless steels at high temperature: Internal oxidation”. Oxidation of Metals 85 (5‒6) : 509–536.
  • 29. Hansson A.N., K. Pantleon, F.B. Grumsen, M.A.J. Somers. 2010. “Microstructure evolution during steam oxidation of a Nb stabilized austenitic stainless steel”. Oxidation of Metals 73 (1‒2) : 289‒309.
  • 30. Essuman E., G.H. Meier, J. Żurek, M. Hänsel, L. Singheiser, W.J. Quadakkers. 2007. “Enhanced internal oxidation as trigger for breakaway oxidation of Fe–Cr alloys in gases containing water vapor”. Scripta Materialia 57 (9) : 845–848.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc872866-3531-439a-a453-9736470ad709
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.