Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
The influence of glassy wastes on the sintering process of Portland cement clinker
Języki publikacji
Abstrakty
Głównym wyzwaniem europejskiego przemysłu cementowego ostatniej dekady jest tzw. dekarbonizacja, czyli ograniczenie emisji CO2 w całym cyklu produkcyjnym. W przypadku przemysłu cementowego zadanie to jest o tyle trudne, że większość emisji CO2 pochodzi z dysocjacji termicznej kalcytu obecnego w surowcach do produkcji klinkieru portlandzkiego. Głównym sposobem ograniczenia emisji CO2 z tego źródła jest wykorzystanie nośników tlenku wapnia w formie niewęglanowej. W praktyce jednak dostępność takich surowców w Europie jest bardzo ograniczona, a ich import z innych kontynentów jest nie tylko nieopłacalny, ale również nieekologiczny ze względu na emisje generowane podczas transportu. Istnieją jednak przykłady wykorzystania surowców odpadowych zawierających tlenek wapnia w produkcji klinkieru portlandzkiego. Należą do nich m.in. granulowany żużel wielkopiecowy, żużle konwertorowe, wapno pokarbidowe, popioły wapienne, a także stłuczka szklana będąca przedmiotem analiz. Celem badań jest analiza spiekalności klinkierów z dodatkiem różnych odpadów szklistych. Wybrano te odpady szkliste, które ze względu na zanieczyszczenia i drobnoziarnistą postać nie mogły być ponownie wykorzystane w produkcji szkła. Zastosowanie stłuczki szklanej było ilościowo ograniczone ze względu na dużą zawartość Na2O [13% -15%]. Odpady szkliste wprowadzone do zestawu surowcowego są głównie nośnikiem SiO2 [67% - 69%] oraz w mniejszym stopniu CaO [9,0% - 12,4%]. Wprowadzenie nawet niewielkich ilości stłuczki podnosi zapotrzebowanie na surowiec wysokowapienny a także surowce będące nośnikiem Al2O3 i Fe2O3. Mimo, że odpady szkliste wprowadzają CaO w formie niewęglanowej to wymienione zmiany w nadawie surowcowej w połączeniu z obecnością w surowcach innych niż kalcyt węglanów (dolomit, syderyt) sprawiają, że dodatek stłuczki szklanej nie koniecznie powoduje ograniczenie emisji surowcowej CO2. Pozytywny wpływ dodatku odpadów szklistych na spiekalność zestawów surowcowej jest zauważalny w temperaturach 1200°C - 1250°C. Prawdopodobnie jest on związany z dużą zawartością Na2O w odpadach szklistych oraz ich amorficzną formą.
The main challenge for the European cement industry in the last decade is so-called decarbonisation, i.e. reducing CO2 emissions throughout the entire production cycle. In the case of the cement industry, this task is difficult because most CO2 emissions come from the thermal dissociation of calcite present in raw materials for the production of Portland clinker. The main way to reduce CO2 emissions from this source is to use calcium oxide sources in non-carbonate form. In practice, however, the availability of such raw materials in Europe is very limited, and their import from other continents is not only unprofitable, but also environmentally unfriendly due to emissions generated during transport. However, there are examples of the use of waste raw materials containing calcium oxide in the Portland clinker production. These include, among others, granulated blast furnace slag, converter slag, carbide lime, lime ash, as well as glass cullet which is the subject of analyses. The aim of the research is to analyse the burnability of clinkers with the addition of various glass wastes. The glass wastes selected were those that could not be reused in glass production due to contamination and fine-grained form. The use of glass cullet was quantitatively limited due to the high Na2O content [13 % -15 %]. Glass waste introduced into the raw material batch is mainly a source of SiO2 [67 % - 69 %] and to a lesser extent CaO [9.0 % - 12.4 %]. The introduction of even small amounts of cullet increases the demand for high-lime raw material and also raw materials that are sources of Al2O3 and Fe2O3. Although glass waste introduces CaO in a non-carbonate form, the above changes in the raw material feed combined with the presence of carbonates in raw materials other than calcite [dolomite, siderite] mean that the addition of glass cullet does not necessarily reduce CO2 emissions from raw materials. The positive effect of the addition of glass waste on the burnability of raw material batches is noticeable at temperatures of 1200 °C - 1250 °C. It is probably related to the high Na2O content in the glassy waste and its amorphous form.
Wydawca
Czasopismo
Rocznik
Tom
Strony
362--379
Opis fizyczny
Bibliogr. 31 poz., il., tab.
Twórcy
autor
- AGH University of Krakow, Kraków, Poland
autor
- AGH University of Krakow, Kraków, Poland
autor
- AGH University of Krakow, Kraków, Poland
Bibliografia
- 1. A. Marmier, Decarbonisation options for the cement industry. (2023).
- 2. M.B. Ali, R. Saidur, M.S. Hossain, A review on emission analysis in cement industries. Renew. Sust. Ener. Rev. 15, 2252-2261 (2011). https://doi.org/https://doi.org/10.1016/j.rser.2011.02.014.
- 3. J. Deja, A. Uliasz-Bochenczyk, E. Mokrzycki, CO2 emissions from Polish cement industry. Int. J. Greenhouse Gas Contr. 4, 583-588 (2010). https://doi.org/https://doi.org/10.1016/j.ijggc.2010.02.002.
- 4. G.U. Ryu, H.J. Kim, H.J. Yu, S. Pyo, Utilization of steelmaking slag in cement clinker production: A review. J. CO2 Util. 84, 102842 (2024). https://doi.org/https://doi.org/10.1016/j.jcou.2024.102842.
- 5. H.F.W. Taylor, Cement chemistry, Thomas Telford London, 1997.
- 6. W. Kurdowski, Poradnik technologa przemysłu cementowego, Arkady, 1981.
- 7. A. Uliasz-Bocheńczyk, M. Gawlicki, E. Mokrzycki, M. Pyzalski, Odmiany polimorficzne CaCO3 jako produkt karbonatyzacji zaczynów cementowych. Gospodarka Surowcami Mineralnymi, 29, 79-88 (2013).
- 8. F. Schorcht, I. Kourti, B.M. Scalet, S. Roudier, L.D. Sancho, Best available techniques (BAT) reference document for the production of cement, lime and magnesium oxide. European Commission Joint Research Centre Institute for Prospective Technological Studies, Luxembourg, 506, (2013). https://doi.org/https://doi.org/10.2788/12850.
- 9. A. Rahman, M.G. Rasul, M.M.K. Khan, S. Sharma, Recent development on the uses of alternative fuels in cement manufacturing process. Fuel 145, 84-99 (2015). https://doi.org/https://doi.org/10.1016/j.fuel.2014.12.029.
- 10. P.E. Tsakiridis, G.D. Papadimitriou, S. Tsivilis, C. Koroneos, Utilization of steel slag for Portland cement clinker production. J. Hazard. Mater. 152, 805-811 (2008). https://doi.org/https://doi.org/10.1016/j.jhazmat.2007.07.093.
- 11. A. Monshi, M.K. Asgarani, Producing Portland cement from iron and steel slags and limestone. Cem. Concr. Res. 29, 1373-1377 (1999). https://doi.org/https://doi.org/10.1016/S0008-8846(99)00028-9.
- 12. J. Strigáč, Effect of selected alternative fuels and raw materials on the cement clinker quality. SSPJCE 10, 81-92 (2015). https://doi.org/https://doi.org/10.2478/sspjce-2015-0020.
- 13. Q. Wang, S. Sun, Z. Wang, X. Lyu, Physical properties, hydration mechanism, and leaching evaluation of the Portland cement prepared from carbide residue. J. Clean. Prod. 366, 132777 (2022). https://doi.org/https://doi.org/10.1016/j.jclepro.2022.132777.
- 14. Y. Zhang, J. Wang, L. Zhang, C. Li, H. Jiang, X. Ba, D. Hou, Study on the preparation and properties of high-belite cementitious materials from shield slag and calcium carbide slag. Constr. Build. Mater. 355, 129082 (2022). https://doi.org/https://doi.org/10.1016/j.conbuildmat.2022.129082.
- 15. M. Komljenović, L. Petrašinović-Stojkanović, Z. Baščarević, N. Jovanović, A. Rosić, Fly ash as the potential raw mixture component for Portland cement clinker synthesis. J. Therm. Anal. Calorim. 96, 363-368 (2009). https://doi.org/https://doi.org/10.1007/s10973-008-8951-0.
- 16. G. Chen, H. Lee, K.L. Young, P.L. Yue, A. Wong, T. Tao, K.K. Choi, Glass recycling in cement production - an innovative approach. Waste Manag. 22, 747-753 (2002). https://doi.org/https://doi.org/10.1016/S0956-053X(02)00047-8.
- 17. A. Bădănoiu, A. Moanță, O. Dumitrescu, A.I. Nicoară, R. Trușcă, Waste glass valorization as raw material in the production of portland clinker and cement. Materials 15, 7403 (2022). https://doi.org/https://doi.org/10.3390/ma15207403.
- 18. T. Yang, Y. Wang, Y. Bai, X. Chen, Synthesis and Characterization of Cement Clinker Using Waste Glass and Oyster Shells as Natural Ore Substitutes. Materials 17, 5980 (2024). https://doi.org/https://doi.org/10.3390/ma17235980.
- 19. Z. Xie, Y. Xi, Use of recycled glass as a raw material in the manufacture of Portland cement. Mater. Struct. 35, 510-515 (2002). https://doi.org/https://doi.org/10.1007/BF02483139.
- 20. A. Bouregba, A. Diouri, F. Amor, H. Ez-Zaki, O. Sassi, Valorization of glass and shell powders in the synthesis of Belitic clinker, in: MATEC Web Conf. EDP Sciences, 2018, 01021. https://doi.org/https://doi.org/10.1051/matecconf/201814901021.
- 21. D. Mulamehmedović, Z. Osmanović, E. Karić, N. Haračić, Utilization of Waste Glass in Cement Clinker Production: Impacts on Quality, Process Efficiency and Environmental Benefits. Cognizance J. Multidiscip. Stud. 4, 158-164 (2024). https://doi.org/https://doi.org/10.47760/cognizance.2024.v04i11.014.
- 22. W. Kurdowski, Cement and Concrete Chemistry, Springer Science & Business, 2014.
- 23. I. Jawed, J. Skalny, Alkalies in cement: A review I. Forms of Alkalies and their effect on clinker formation. Cem. Concr. Res. 7, 719-729 (1977). https://doi.org/https://doi.org/10.1016/0008-8846(77)90056-4.
- 24. J. Butt, W.W. Timaszew, W.P. Osokin, 6th ICCC Moscow, vol. I, Strojizdat, Moscow (1976).
- 25. R. Blaise, N. Musikas, H. Tiedrez, Nouvelle méthode détermination cinétique de l’aptitude á la cuisson d’un cru de cimenterie. Rev. Matér. Constr. 674/675, 287-295 (1971).
- 26. M.P. Javellana, I. Jawed, Extraction of free lime in portland cement and clinker by ethylene glycol. Cem. Concr. Res. 12, 399-403 (1982). https://doi.org/https://doi.org/10.1016/0008-8846(82)90088-6.
- 27. R.F. Gebhardt, Rapid methods for chemical analysis of hydraulic cement, ASTM International, 1988.
- 28. A. C204, Standard test methods for fineness of hydraulic cement by air-permeability apparatus. Annual Book of ASTM; American Society of Testing and Materials: West Conshohocken, PA, USA, (2007).
- 29. A. Garbacik, E. Pałka, H. Szeląg, Burnability of raw mixes with great sand content. Cem. Wapno Beton 7, 93-103 (2002).
- 30. P. Wyszomirski, K. Galos, Surowce mineralne i chemiczne przemysłu ceramicznego, AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne, 2012.
- 31. J.E. Mauder, J. Skalny, Calcium alkali sulfates in clinker. Amer. Ceram. Soc. Bull. 56, 987-990 (1977).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc82ad84-4863-4aa6-9dab-0ec7fccd8e60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.