Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Phoxonic crystal is a periodic artificial structure that can manipulate optical and acoustic waves in the same temporal and spatial domain. It has broad application prospect in optical communication, optical mechanics sensor, quantum computations, phoxonic crystal integrated devices and so on. In this paper, we adopt a silicon-based two-dimensional square lattice structure, which can exhibit wide band gap of phonons and photons simultaneously. Then a periodic rectangular structure is introduced on the surface, the effects of the height and width of the rectangle on the optical and acoustic surface wave modes are analyzed. Based on the mode gap effect, a surface heterostructure composed of rectangles with different heights and widths is constructed. Then two identical surface heterostructures are placed face to face with an air slot in the middle, and connected with silicon substrate on both sides, which form an air slot heterostructure cavity. Five phononic cavity modes and three photonic cavity modes are obtained, the acousto-optical coupling rates between phononic and photonic cavity modes are calculated. The results show that the coupling rate between phononic and photonic cavity mode with the same symmetry and maximum overlap is the largest, and the coupling rates between the combination of phononic cavity modes α and β and photonic cavity modes can be adjusted by changing the phase difference φ of modes α and β. In this paper, the finite element method is used to simulate the calculation.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
603--619
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
- School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China
autor
- School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China
autor
- School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China
autor
- Key Laboratory of Mechanics on Western Disaster and Environment of Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China
Bibliografia
- [1] PENNEC Y., LAUDE V., PAPANIKOLAOU N., DJAFARI-ROUHANI B., OUDICH M., JALLAL S.E., BEUGNOT J.C., ESCALANTE J.M., MARTÍNEZ A., Modeling light-sound interaction in nanoscale cavities and waveguides, Nanophotonics 3, 2014: 413-440. https://doi.org/10.1515/nanoph-2014-0004
- [2] HASSOUANI Y.E., LI C., PENNEC Y., EL BOUDOUTI E.H., LARABI H., AKJOUJ A., MATAR O.B., LAUDE V., PAPANIKOLAOU N., MARTINEZ A., ROUHANI B.D., Dual phononic and photonic band gaps in a periodic array of pillars deposited on a thin plate, Physical Review B 82, 2010: 155405. https://doi.org/10.1103/PhysRevB.82.155405
- [3] BRIA M., ASSOUAR B., OUDICH M., PENNEC Y., VASSEUR J., DJAFARI-ROUHANI B., Opening of simultaneous photonic and phononic band gap in two-dimensional square lattice periodic structure, Journal of Applied Physics 109, 2011: 014507. https://doi.org/10.1063/1.3530682
- [4] ROLLAND Q., DUPONT S., GAZALET J., KASTELIK J., PENNEC Y., DJAFARI-ROUHANI B., LAUDE V., Simultaneous bandgaps in LiNbO3 phoxonic crystal slab, Optics Express 22, 2014: 16288-16297. https://doi.org/10.1364/OE.22.016288
- [5] PAPANIKOLAOU N., PSAROBAS I.E., STEFANOU N., Absolute spectral gaps for infrared light and hypersound in three-dimensional metallodielectric phoxonic crystals, Applied Physics Letters 96, 2010: 231917. https://doi.org/10.1063/1.3453448
- [6] HSIAO F., HSIEH C., HSIEH H., CHIU C., High-efficiency acousto-optical interaction in phoxonic nanobeam waveguide, Applied Physics Letters 100, 2012: 171103. https://doi.org/10.1063/1.4705295
- [7] ARAM M.H., KHORASANI S., Optical wave evolution due to interaction with elastic wave in a phoxonic crystal slab waveguide, Applied Physics B 123, 2017: 1-9. https://doi.org/10.1007/s00340-017-6792-x
- [8] PENNEC Y., ROUHANI B.D., LI C., ESCALANTE J.M., MARTINEZ A., BENCHABANE S., LAUDE V., PAPANIKOLAOU N., Band gaps and cavity modes in dual phononic and photonic strip waveguides, AIP Advances 1, 2011: 041901. https://doi.org/10.1063/1.3675799
- [9] LIU K., YUAN X.D., YE W.M., ZENG C., Air waveguide in a hybrid 1D and 2D photonic crystal heterostructure, Optics Communications 282, 2009: 4445-4448. https://doi.org/10.1016/j.optcom.2009.08.001
- [10] ELSHAHAT S., ABOOD I., LIANG Z.X., PEI J.H., OUYANG Z.B., Sporadic-slot photonic-crystal waveguide for all-optical buffers with low-dispersion, distortion, and insertion loss, IEEE Access 8, 2020: 77689-77700. https://doi.org/10.1109/ACCESS.2020.2986082
- [11] PENNEC Y., JIN Y., ROUHANI B.D., Phononic and photonic crystals for sensing applications, Advances in Applied Mechanics 52, 2019: 105-145. https://doi.org/10.1016/bs.aams.2018.11.001
- [12] FORZANI L., MENDEZ C.G., URTEAGA R., HUESPE A.E., Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals, Sensors and Actuators A 331, 2021: 112915. https://doi.org/10.1016/j.sna.2021.112915
- [13] TAYOUB H., HOCINI A., HARHOUZ A., High-sensitive mid-infrared photonic crystal sensor using slotted-waveguide coupled-cavity, Progress In Electromagnetics Research M 105, 2021: 45-54. http://dspace.univ-msila.dz:8080//xmlui/handle/123456789/30220
- [14] HOANG T.H.C., Analysis on slotted photonic crystal cavity and waveguide combination in silicon-on-insulator platform, Optik 251, 2022: 168465. https://doi.org/10.1016/j.ijleo.2021.168465
- [15] CHEN G.D., ZHANG R., SUN J., On-chip optical mode conversion based on dynamic grating in photonic-phononic hybrid waveguide, Scientific Reports 5, 2015: 1-7. https://doi.org/10.1038/srep10346
- [16] TEUFEL J.D., LI D., ALLMAN M.S., CICAK K., SIROIS A.J., WHITTAKER J.D., SIMMONDS R.W., Circuit cavity electromechanics in the strong-coupling regime, Nature 471(7337), 2011: 204-208. https://doi.org/10.1038/nature09898
- [17] GROBLACHER S., HAMMERER K., VANNER M.R., ASPELMEYER M., Observation of strong coupling between a micromechanical resonator and an optical cavity field, Nature 460(7256), 2009: 724-727. https://doi.org/10.1038/nature08171
- [18] MALDOVAN M., THOMAS E.L., Simultaneous localization of photons and phonons in two-dimensional periodic structures, Applied Physics Letters 88, 2006: 251907. https://doi.org/10.1063/1.2216885
- [19] SADAT-SALEH S., BENCHABANE S., BAIDA F.I., BERNAL M., LAUDE V., Tailoring simultaneous photonic and phononic band gaps, Journal of Applied Physics 106, 2009: 074912. https://doi.org/10.1063/1.3243276
- [20] EICHENFIELD M., CHAN J., CAMACHO R.M., VAHALA K.J., PAINTER O., Optomechanical crystals, Nature 462, 2009: 78-82. https://doi.org/10.1038/nature08524
- [21] LAUDE V., BEUGNOT J.-C., BENCHABANE S., PENNEC Y., DJAFARI-ROUHANI B., PAPANIKOLAOU N., MARTINEZ A., Design of waveguides in silicon phoxonic crystal slabs, [In] 2010 IEEE International Ultrasonics Symposium, San Diego, CA, USA, October 11-14, 2010. https://doi.org/10.1109/ULTSYM.2010.5935703
- [22] ROLLAND Q., OUDICH M., EL-JALLAL S., DUPONT S., PENNEC Y., GAZALET J., KASTELIK J.C., LÉVÊQUE G., DJAFARI-ROUHANI B., Acousto-optic couplings in two-dimensional phoxonic crystal cavities, Applied Physics Letters 101, 2012: 061109. https://doi.org/10.1063/1.4744539
- [23] SHU Y.Y., YU M.H., YU T.B., LIU W.X., WANG T.B., LIAO Q.H., Design of phoxonic virtual waveguides for both electromagnetic and elastic waves based on the self-collimation effect: an application to enhance acousto-optic interaction, Optics Express 28(17), 2020: 24813-24819. https://doi.org/10.1364/OE.399591
- [24] RAMP H., CLARK T.J., HAUER B.D., DOOLIN C., BALRAM K.C., SRINIVASAN K., DAVIS J.P., Wavelength transduction from a 3D microwave cavity to telecom using piezoelectric optomechanical crystals, Applied Physics Letters 116, 2020: 174005. https://doi.org/10.1063/5.0002160
- [25] AFSARI A., SARRAF M.J., KHATIB F., Application of tungsten oxide thin film in the photonic crystal cavity for hydrogen sulfide gas sensing, Optik 227, 2021: 165664. https://doi.org/10.1016/j.ijleo.2020.165664
- [26] MOSBAH C., BENMERKHI A., BOUCHEMAT M., BOUCHEMAT T., Design of refractive index sensing based on 2D PhC air-slot width-modulated line-defect microcavity, Optical and Quantum Electronics 51, 2019: 1-14. https://doi.org/10.1007/s11082-019-1871-3
- [27] WANG C., QUAN Q., KITA S., LI Y., LONČAR M., Single-nanoparticle detection with slot-mode photonic crystal cavities, Applied Physics Letters 106, 2015: 261105. https://doi.org/10.1063/1.4923322
- [28] ALMEIDA V.R., XU Q., BARRIOS C.A., LIPSON M., Guiding and confining light in void nanostructure, Optics Letters 29, 2004: 1209-1211. https://doi.org/10.1364/OL.29.001209
- [29] ROBINSON J.T., MANOLATOU C., CHEN L., LIPSON M., Ultrasmall mode volumes in dielectric optical microcavities, Physical Review Letters 95, 2005: 143901. https://doi.org/10.1103/PhysRevLett.95.143901
- [30] DI FALCO A., O’FAOLAIN L., KRAUSS T.F., Chemical sensing in slotted photonic crystal heterostructure cavities, Applied Physics Letters 94(6), 2009: 063503. https://doi.org/10.1063/1.3079671
- [31] RYCKMAN J.D., SHARON M.W., Localized field enhancements in guided and defect modes of a periodic slot waveguide, IEEE Photonics Journal 3, 2011: 986-995. https://doi.org/10.1109/JPHOT.2011.2170966
- [32] GAO J., MCMILLAN J.F., WU M.C., ZHENG J., ASSEFA S., WONG C.W., Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes, Applied Physics Letters 96, 2010: 051123. https://doi.org/10.1063/1.3298642
- [33] SAFAVI-NAEINI A.H., ALEGRE T.P.M., WINGER M., PAINTER O., Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity, Applied Physics Letters 97, 2010: 181106. https://doi.org/10.1063/1.3507288
- [34] JÁGERSKÁ J., ZHANG H., DIAO Z., THOMAS N.L., HOUDRÉ R., Refractive index sensing with an air-slot photonic crystal nanocavity, Optics Letters 35, 2010: 2523-2525. https://doi.org/10.1364/OL.35.002523
- [35] ZHANG H., ZHANG Y., GAO G., ZHAO X., WANG Y., HUANG Q., XIA J., Design of a femtogram scale double-slot photonic crystal optomechanical cavity, Optics Express 23, 2015: 23167-23176. https://doi.org/10.1364/OL.35.002523
- [36] MA T.X., WANG Y.S., ZHANG C., Enhancement of acousto-optical coupling in two-dimensional air -slot phoxonic crystal cavities by utilizing surface acoustic waves, Physics Letters A 381, 2017: 323-329. https://doi.org/10.1016/j.physleta.2016.10.052
- [37] ZHAO Y.X., BUCHHOLZ J.H., GRENTER T., LIU X., BÖGEL G.V., SEIDL K., BALZER J.C., Sensitive and robust millimeter-wave/terahertz photonic crystal chip for biosensing applications, IEEE Access 10, 2022: 92237-92248. https://doi.org/10.1109/ACCESS.2022.3202537
- [38] CHAN J., SAFAVI-NAEINI A.H., HILL J.T., MEENEHAN S., PAINTER O., Optimized optomechanical crystal cavity with acoustic radiation shield, Applied Physics Letters 101, 2012: 081115. https://doi.org/10.1063/1.4747726
- [39] SONG B.S., NODA S., ASANO T., AKAHANE Y., Ultra-high-q photonic double-heterostructure nanocavity, Nature Materials 4, 2005: 207-210. https://doi.org/10.1038/nmat1320
- [40] LI Y.Z., CUI K., FENG X., HUANG Y., HUANG Z., LIU F., ZHANG W., Optomechanical crystal nanobeam cavity with high optomechanical coupling rate, Journal of Optics 17, 2015: 045001. https://doi.org/10.1088/2040-8978/17/4/045001
- [41] GAVARTIN E., BRAIVE R., SAGNES I., ARCIZET O., BEVERATOS A., KIPPENBERG T.J., ROBERT-PHILIP I., Optomechanical coupling in a two-dimensional photonic crystal defect cavity, Physical Review Letters 106, 2011: 203902. https://doi.org/10.1103/PhysRevLett.106.203902
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc81a90c-d09a-4c84-aa14-ee30207c16b0