PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exergetic performance analysis of solar air heater with inverted L-shape ribs as roughness element

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Improvement in the exegetic efficiency of a solar air heater (SAH) can be done by enhancing the rate of heat transfer. In this work, the exergetic efficiency optimization of an artificially roughened solar air heater having an inverted L-shape rib has been performed. The numerical analysis of the exergetic performance of the solar air heater was carried out at a constant heat flux of 1000 W/m2 . The study was conducted to investigate the effect of different relative roughness pitch (7.14–17.86) on the exergy losses, under the Reynolds number range of 3000 to 18 000. The roughness parameter of this geometry has been optimized and found to be among functional operating parameters like average solar intensity and temperature rise across the collector. The optimized value of relative roughness pitch is 17.86 at the isolation of 1000 W/m2 , and the parameter of temperature rise ranges from 0.005 to 0.04.
Rocznik
Strony
241--267
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • Maya Institute of Technology and Management, Selaqui, Dehradun, Uttarakhand-248007, India
  • National Institute of Technology, Hamirpur, Himachal Pradesh, 177005, India
  • National Institute of Technology, Hamirpur, Himachal Pradesh, 177005, India
Bibliografia
  • [1] Singh I., Singh S.: A review of artificial roughness geometries employed in solar air heaters. Renew. Sust. Energ. Rev. 92(2018), 405–425. doi: 10.1016/j.rser.2018.04.108
  • [2] Singh I., Singh S.: CFD analysis of solar air heater duct having square wave profiled transverse ribs as roughness elements. Sol. Energy 162(2018), 442–453. doi: 10.1016/j.solener.2018.01.019
  • [3] Kalogirou S.A.: Solar thermal collectors and applications. Prog. Energ. Combust. Sci. 30(2004), 3, 231–295. doi: 10.1016/j.pecs.2004.02.001
  • [4] Omer A.M.: Energy use and environmental impacts: A general review. J. Renew. Sustain Ener. 1(2009), 5, 053101. doi: 10.1063/1.3220701
  • [5] Sharma S.L., Debbarma A.: A review on thermal performance and heat transfer augmentation in solar air heater. Int. J. Sustain. Energ. 41(2022), 11, 1973–2019.doi: 10.1080/14786451.2022.2125518
  • [6] Prasad K., Mullick S.C.: Heat transfer characteristics of a solar air heater used for drying purposes. Appl. Energ. 13(1983), 2, 83–93. doi: 10.1016/0306-2619(83)90001-6
  • [7] Sahu M.M., Bhagoria J.L.: Augmentation of heat transfer coefficient by using 90 broken transverse ribs on absorber plate of solar air heater. Renew. Energ. 30(2005),13, 2057–2073. doi: 10.1016/j.renene.2004.10.016
  • [8] Gupta D., Solanki S.C., Saini J.S.: Thermohydraulic performance of solar air heaters with roughened absorber plates. Sol. Energ. 61(1997), 1, 33–42. doi: 10.1016/S0038-092X(97)00005-4
  • [9] Karwa R.: Experimental studies of augmented heat transfer and friction in asymmetrically heated rectangular ducts with ribs on the heated wall in transverse, inclined, V-continuous and V-discrete pattern. Int. Commun. Heat Mass 30(2003), 2, 241–250. doi: 10.1016/S0735-1933(03)00035-6
  • [10] Aharwal K.R., Gandhi B.K., Saini J.S.: Experimental investigation on heat-transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater. Renew. Energ. 33(2008), 4, 585–596. doi: 10.1016/j.renene.2007.03.023
  • [11] Saini R.P., Saini J.S.: Heat transfer and friction factor correlations for artificially roughened ducts with expanded metal mesh as roughness element. Int. J. Heat Mass Tran. 40(1997), 4, 973–986. doi: 10.1016/0017-9310(96)00019-1
  • [12] Momin A.M.E., Saini J.S., Solanki S.C.: Heat transfer and friction in solar air heater duct with V-shaped rib roughness on absorber plate. Int. J. Heat Mass Tran. 45(2002), 16, 3383–3396. doi: 10.1016/S0017-9310(02)00046-7
  • [13] Muluwork K.B.: Investigations on fluid flow and heat transfer in roughened absorber solar heaters. Ph.D. thesis, IIT Roorkee, 2000.
  • [14] Karwa R., Solanki S.C., Saini J.S.: Heat transfer coefficient and friction factor correlations for the transitional flow regime in rib-roughened rectangular ducts. Int. J. Heat Mass Tran. 42(1999), 9, 1597–1615. doi: 10.1016/S0017-9310(98)00252-X
  • [15] Bhagoria J.L., Saini J.S., Solanki S.C.: Heat transfer coefficient and friction factor correlations for rectangular solar air heater duct having transverse wedge shaped rib roughness on the absorber plate. Renew. Energ. 25(2002), 3, 341–369. doi: 10.1016/S0960-1481(01)00057-X
  • [16] Saini S.K., Saini R.P.: Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having arc-shaped wire as artificial roughness. Sol. Energy 82(2008), 12, 1118–1130. doi: 10.1016/j.solener.2008.05.010
  • [17] Saini R.P., Verma J.: Heat transfer and friction factor correlations for a duct having dimple-shape artificial roughness for solar air heaters. Energy 33(2008), 8, 1277–1287. doi: 10.1016/j.energy.2008.02.017
  • [18] Karmare S.V., Tikekar A.N.: Heat transfer and friction factor correlation for artificially roughened duct with metal grit ribs. Int. J. Heat Mass Tran. 50(2007), 21–22, 4342–4351. doi: 10.1016/j.ijheatmasstransfer.2007.01.065
  • [19] Hwang J.J., Liou T.M.: Heat transfer in a rectangular channel with perforated turbulence promoters using holographic interferometry measurement. Int. J. Heat Mass Tran. 38(1995), 17, 3197–3207. doi: 10.1016/0017-9310(95)00065-H
  • [20] Şara O.N., Pekdemir T., Yapici S., Erşahan H.: Thermal performance analysis for solid and perforated blocks attached on a flat surface in duct flow. Energ. Convers. Manage. 41(2000), 10, 1019–1028. doi: 10.1016/S0196-8904(99)00163-6
  • [21] Sara O.N., Pekdemir T., Yapici S., Yilmaz M.: Heat-transfer enhancement in a channel flow with perforated rectangular blocks. Int. J. Heat Fluid Fl. 22(2001), 5, 509–518. doi: 10.1016/S0142-727X(01)00117-5
  • [22] Buchlin J.M.: Convective heat transfer in a channel with perforated ribs. Int. J. Therm. Sci. 41(2002), 4, 332–340. doi: 10.1016/S1290-0729(02)01323-6
  • [23] Moon S.W., Lau S.C.: Heat transfer between blockages with holes in a rectangular channel. J. Heat Transf. 125(2003), 4, 587–594. doi: 10.1115/1.1576812
  • [24] Karwa R., Maheshwari B.K., Karwa N.: Experimental study of heat transfer enhancement in an asymmetrically heated rectangular duct with perforated baffles. Int. Commun. Heat Mass 32(2005), 1–2, 275–284. doi: 10.1016/j.icheatmass transfer.2004.10.002
  • [25] Karwa R. Maheshwari B.K.: Heat transfer and friction in an asymmetrically heated rectangular duct with half and fully perforated baffles at different pitches. Int. Commun. Heat Mass 36(2009), 3, 264–268. doi: 10.1016/j.icheatmass transfer.2008.11.005
  • [26] Liu H., Wang J.: Numerical investigation on synthetical performances of fluid flow and heat transfer of semi attached rib-channels. Int. Commun. Heat Mass 54(2011), 1–3, 575–583. doi: 10.1016/j.ijheatmasstransfer.2010.09.013
  • [27] Nuntadusit C., Wae-Hayee M., Bunyajitradulya A., Eiamsa-ard S.: Thermal visualization on surface with transverse perforated ribs. Int. Commun. Heat Mass39(2012), 5, 634–639. doi: 10.1016/j.icheatmasstransfer.2012.03.001
  • [28] Ghildyal A., Bisht V.S., Bhandari P., Rawat K.S.: Effect of D-shaped, reverse Dshaped and U-shaped turbulators in solar air heater on thermo-hydraulic performance. Arch. Thermodyn. 44(2023), 2, 3–20. doi: 10.24425/ather.2023.146556
  • [29] Gawande V.B., Dhoble A.S., Zodpe D.B., Chamoli S.: Experimental and CFD investigation of convection heat transfer in solar air heater with reverse L-shaped ribs. Sol. Energy 131(2016), 275–295. doi: 10.1016/j.solener.2016.02.040
  • [30] Chamoli S., Thakur N.S.: Exergetic performance evaluation of solar air heater havingV-down perforated baffles on the absorber plate. J. Therm. Anal. Calorim. 117(2014), 909–923. doi: 10.1007/s10973-014-3765-8
  • [31] Kumar S., Kumar R., Goel V., Bhattacharyya S., Issakhov A.: Exergetic performance estimation for roughened triangular duct used in solar air heaters. J. Therm. Anal. Calorim. 145(2021), 3, 1661–1672. doi: 10.1007/s10973-021-10852-w
  • [32] Yadav S., Kaushal M.: Exergetic performance evaluation of solar air heater having arc shape oriented protrusions as roughness element. Sol. Energy 105(2014), 181–189. doi: 10.1016/j.solener.2014.04.001
  • [33] Zheng N., Liu P., Shan F., Liu Z., Liu W.: Heat transfer enhancement in a novel internally grooved tube by generating longitudinal swirl flows with multi-vortexes. Appl. Therm. Eng. 95(2016), 25, 421–432. doi: 10.1016/j.applthermaleng.2015.11.066
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc6ff86f-15cc-41d9-8ade-7857f957e056
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.