PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Biodrukowanie z wykorzystaniem biotuszy na bazie alginianów

Identyfikatory
Warianty tytułu
EN
Bioprinting using alginate-based bioinks
Języki publikacji
PL
Abstrakty
PL
W ostatnich latach nastąpił znaczny rozwój techniki biodrukowania 3D, będącej jednym z rozwiązań współczesnej inżynierii materiałowej. Biodrukowane struktury trójwymiarowe doskonale odwzorowują naturalne warunki panujące w organizmie. Szczególną rolę przypisuje się regeneracji tkanek i narządów w wykorzystaniem biotuszy zawierających żywe komórki. Jednym z głównych składników biotuszów są alginiany – polisacharydy charakteryzujące się biokompatybilnością oraz możliwością tworzenia struktury hydrożelowej. W pracy zaprezentowano najnowsze doniesienia literaturowe dotyczące alginianów stosowanych jako biotusze do odbudowy tkanki kostnej i chrzęstnej. Ponadto omówiono pokrótce właściwości tych polimerów oraz typy biodruku, takie jak biodruk ekstruzyjny, kropelkowy (inkjet) czy też wspomagany laserem.
EN
In recent years, there has been a significant development of 3D bioprinting technique, which is one of the solutions of current materials engineering. Bioprinted three-dimensional structures perfectly replicate the natural conditions in the body. A special role is attributed to the regeneration of tissues and organs using bioinks containing living cells. One of the main components of bioinks are alginates – polysaccharides characterized by biocompatibility and ability to form a hydrogel structure. This review presents recent literature reports on alginates used as bioinks for bone and cartilage reconstruction. Moreover, the properties of these polymers and types of bioprinting such as extrusion, droplet (inkjet) or laser-assisted bioprinting are briefly discussed.
Rocznik
Strony
12--17
Opis fizyczny
Bibliogr. 62 poz., rys., tab.
Bibliografia
  • [1] Cleetus C.M., Primo F.A., Raveendran N.L., Novero J.C., Spencer C.T., Ramana C.V., Joddar B.: Alginate hydrogels with embedded ZnO nanoparticles for wound healing therapy. International Journal of Nanomedicine (15) (2020) 5097–5111.
  • [2] Cheng D., Jiang C., Xu J., Liu Z., Mao X.: Characteristics and applications of alginate lyases. A review. International Journal of Biological Macromolecules (164) (2020) 1304–1320.
  • [3] Tonnesen H.H., Karlsen J.: Alginate in drug delivery systems. Drug Development and Industrial Pharmacy 28 (6) (2002) 621– 630.
  • [4] Dhamecha D., Movsas R., Sano U., Menon J.U.: Applications of alginate microspheres in therapeutics delivery and cell culture. Past, present and future. International Journal of Pharmaceutics (569) (2019) 118627.
  • [5] Wang M., Zhang Z., Chen L.: Potential applications of alginate oligosaccharides for biomedicine. A mini review. Carbohydrate Polymers (271) (2021) 118408.
  • [6] Lee K.Y., Mooney D.J.: Alginate: properties and biomedical applications. Progress in Polymer Science 37 (1) (2012) 106–126.
  • [7] Kaczmarek-Pawelska A.: Alginate-based hydrogels in regenerative medicine. Alginates. Recent uses of this natural polymer (2019).
  • [8] August A.D., Kong H.J., Money D.J.: Alginate hydrogels as biomaterials. Macromolecular Bioscience 6 (8) (2006) 623–633.
  • [9] Rastogi P., Kandasubramanian B.: Review on alginate-based hydrogel bio-printing for application in tissue engineering. Biofabrication 11 (4) (2019) 042001.
  • [10] Axpe E., Oyen M.L.: Applications of alginate-based bioinks in 3D bioprinting. International Journal of Molecular Sciences 17 (12) (2016) 1976.
  • [11] Levato R., Visser J., Planell J.A., Engel E., Malda J., Mateos-Timoneda M.A: Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication 3 (6) (2014).
  • [12] Daly A.C., Prendergast M.E., Hughes A.J., Burdick J.A.: Bioprinting for the biologist. Cell 1 (184) (2021) 18–32.
  • [13] Ozbolat S., Yan W.C., Lu W.F., Wang C.H., Fuh J.Y.H.: 3D bioprinting of tissues and organs for regenerative medicine. Advanced Drug Delivery Reviews (132) (2018) 296–332.
  • [14] Wenger R., Giraud M.N.: 3D printing applied to tissue engineered vascular grafts. Applied Sciences 12 (8) (2018) 2631.
  • [15] Axpe E., Oyen M.L.: Applications of alginate-based bioinks in 3D bioprinting. International Journal of Molecular Sciences 12 (17) (2016).
  • [16] Schiele N.R., Corr D.T., Huang Y., Raof N.A., Xie Y., Chrisey D.B.: Laser-based direct-write techniques for cell printing. Biofabrication 3 (2) (2010) 1–14.
  • [17] Kingsley D.M., Roberge C.L., Rudkouskaya A., Faulkner F.D., Barroso M., Intes X., Corr D.T.: Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies. Acta Biomaterialia (95) (2019) 357–370.
  • [18] Xiong R., Zhang Z., Chai W., Chrisey D.B., Huang Y.: Study of gelatin as an effective energy absorbing layer for laser bioprinting. Biofabrication 2 (9) (2017) 1–14.
  • [19] Ringeisen B.R., Othon C.M., Barron J.A., Young D., Spargo B.J.: Jet-based methods to print living cells. Biotechnology Journal 9 (1) (2006) 930–948.
  • [20] Gudapati H., Dey M., Ozbolat I.: A comprehensive review on droplet-based bioprinting. Past, present and future. Biomaterials (102) (2016) 20–42.
  • [21] Li X., Liu B., Pei B., Chen J., Zhou D., Peg J., Zhang X., Jia W., Xu T.: Inkjet bioprinting of biomaterials. Chemical Reviews 19 (120) (2020) 10793–10833.
  • [22] Zhang Y., Kumar P., Lv S., Xiong D., Zhao H., Cai Z., Zhao X.: Recent advances in 3D bioprinting of vascularized tissues. Materials and Design (199) (2021) 1093–1098.
  • [23] Ozbolat I.T., Hospodiuk M.: Current advances and future perspectives in extrusion-based bioprinting. Biomaterials (76) (2016) 321–343.
  • [24] Malda J., Visser J., Melchels F.P., Jüngst T., Hennink W.E., Dhert W.J.A., Groll J., Hutmacher D.W.: 25th Anniversary Article . Engineering Hydrogels for Biofabrication. Advanced Materials (25) (2013) 5011–5028.
  • [25] Pedde R.D., Mirani B., Navaei A., Styan T., Wong S., Mehrali M., Thakur A., Mohtaram N.K., Bayati A., Dolatshahi-Pirouz A., Nikkhah M., Willerth S.M., Akbari M.: Emerging biofabrication strategies for engineering complex tissue constructs. Advanced Materials 19 (29) (2017) 1–27
  • [26] Miri A.K., Mirzaee I., Hassan S., Oskui S.M., Nieto D., Khademhosseini A., Zhang Y.S.: Effective bioprinting resolution in tissue model fabrication. Lab on a Chip 11 (19) (2019) 2019–2037.
  • [27] Chang R., Nam J., Sun W.: Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication- -based direct cell writing. Tissue Engineering – Part A 1 (14) (2008) 41–48.
  • [28] Kaklamani G., Cheneler D., Grover L.M., Adams M.J., Bowen J.: Mechanical properties of alginate hydrogels manufactured using external gelation. Journal of the Mechanical Behavior of Biomedical Materials (36) (2014) 135–142.
  • [29] Hunt N.C., Smith A.M., Gbureck U., Shelton R.M., Grover L.M.: Encapsulation of fibroblasts causes accelerated alginate hydrogel degradation. Acta Biomaterialia 9 (6) (2010) 3649–3656.
  • [30] Gonzalez-Fernandez T., Tenorio A.J., Campbell K.T., Silva E.A., Leach J.K.: Alginate-based bioinks for 3D bioprinting and fabrication of anatomically accurate bone grafts. Tissue Engineering Part A (2021) 1–32.
  • [31] Li Z., Huang S., Liu Y., Yao B., Hu T., Shi H., Xie J., Fu X.: Tuning alginate-gelatin bioink properties by varying solvent and their impact on stem cell behavior. Scientific Reports 1 (8) (2018) 1–8.
  • [32] Dutta S.D., Hexiu J., Patel D.K., Ganguly K., Lim K.T.: 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/ cellulose nanocrystals for tissue engineering. International Journal of Biological Macromolecules (167) (2021) 644–658.
  • [33] Futrega K., Mosaad E., Chambers K., Lott W.B., Clements J., Doran M.R.: Bone marrow-derived stem/stromal cells (BMSC) 3D microtissues cultured in BMP-2 supplemented osteogenic induction medium are prone to adipogenesis. Cell and Tissue Research 3 (374) (2018) 541–553.
  • [34] Luo W., Song Z., Wang Z., Wang Z., Li Z., Wang C., Liu H., Liu Q., Wang J.: Printability optimization of gelatin-alginate bioinks by cellulose nanofiber modification for potential meniscus bioprinting. Journal of Nanomaterials (2020) (2020) 1–13.
  • [35] Seyedmahmoud R., Çelebi-Saltik B., Barros N., Nasiri R., Banton E., Shamloo A., Ashammakhi N., Dokmeci M.R., Ahadian S.: Three-dimensional bioprinting of functional skeletal muscle tissue using gelatin methacryloyl-alginate bioinks. Micromachines 10 (10) (2019) 1–12.
  • [36] Neufurth M., Wang X., Schroder H.C., Feng Q., Diehl-SeiferT B., Ziebart T., Steffen R., Wang S., Müller W.E.G.: Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Biomaterials 31 (35) (2014) 8810–8819.
  • [37] Wang X., Tolba E., Schroder H.C., Neufurth M., Feng Q., Diehl-Seifert B., Müller W.E.G.: Effect of bioglass on growth and biomineralization of saos-2 cells in hydrogel after 3D cell bioprinting. PLoS ONE 11 (9) (2014) 1–7.
  • [38] Ojansivua M., Rashad A., Ahlinder A., Massera J., Mishra A., Syverud K., Finne-Wistrand A., Miettinen S., Mustafa K.: Wood- -based nanocellulose and bioactive glass modified gelatin- -alginate bioinks for 3D bioprinting of bone cells. Biofabrication (2019) 1–37.
  • [39] Barrère F., Van Blitterswijk C.A., De Groot K.: Bone regeneration. Molecular and cellular interactions with calcium phosphate ceramics. Int. J. Nanomedicine 3 (1) (2006) 317–332.
  • [40] Wüst S., Godla M.E., Müller R., Hofmann S.: Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomaterialia 2 (10) (2014) 630–640.
  • [41] Wang X.F., Lu P.J., Song Y., Sun Y.C., Wang Y.G., Wang Y.: Nano hydroxyapatite particles promote osteogenesis in a three-dimensional bio-printing construct consisting of alginate/gelatin/ hASCs. RSC Advances 8 (6) (2016) 6832–6842.
  • [42] Li X., Chen J., Xu Z., Zou Q., Yang L., Ma M., Shu L., He Z., Ye C.: Osteoblastic differentiation of stem cells induced by graphene oxide-hydroxyapatite-alginate hydrogel composites and construction of tissue-engineered bone. Journal of Materials Science: Materials in Medicine 12 (31) (2020) 1–13.
  • [43] Liu Y., Chen T., Du F., Gu M., Zhang P., Zhang X., Liu J., Lv L., Xiong C., Zhou Y.: Single-layer graphene enhances the osteogenic differentiation of human mesenchymal stem cells in vitro and in vivo. Journal of Biomedical Nanotechnology 6 (12) (2016) 1270–1284.
  • [44] Li J., Zhang Y., Enhe J., Yao B., Wang Y., Zhu D., Li Z., Song W., Duan X., Yuan X., Fu X., Huang S.: Bioactive nanoparticle reinforced alginate/gelatin bioink for the maintenance of stem cell stemness. Materials Science and Engineering C April (126) (2021) 112193.
  • [45] Shim J.H., Lee J.S., Kim J.Y., Cho D.W.: Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/ organ building system. Journal of Micromechanics and Microengineering 8 (22) (2012) 085014.
  • [46] Kolan K.C.R., Semon J.A., Bromet B., Day D.E., Leu M.C.: Bioprinting with human stem cell-laden alginate-gelatin bioink and bioactive glass for tissue engineering. International Journal of Bioprinting 2.2 (5) (2019) 3–15.
  • [47] Song J.L., Fu X.Y., Raza A., Shen N.A., Xue Y.Q., Wang H.J., Wang J.Y.: Enhancement of mechanical strength of TCP-alginate based bioprinted constructs. Journal of the Mechanical Behavior of Biomedical Materials November 2019 (103) (2020) 103533.
  • [48] Zamani Y., Mohammadi J., Amoabediny G., Helder M.N., Zandieh- -Doulabi B., Klein-Nulend J.: Bioprinting of alginate-encapsulated pre-osteoblasts in PLGA/β-TCP scaffolds enhance cell retention but impairs osteogenic differentiation compared to cell seeding after 3D-printing. Regenerative Engineering and Translational Medicine (2020).
  • [49] Bendtsen S.T., Quinnell S.P., Wei M.: Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Journal of Biomedical Materials Research – Part A 5 (105) (2017) 1457–1468.
  • [50] Jang C.H., Ahn S.H., Yang G.H., Kim G.H.: A MSCs-laden polycaprolactone/ collagen scaffold for bone tissue regeneration. RSC Advances 8 (6) (2016) 6259–6265.
  • [51] Chen Y., Xiong X., Liu X., Cui R., Wang C., Zhao G., Zhi W., Lu M., Duan K., Weng J., Qu S., Ge S.: 3D Bioprinting of shear-thinning hybrid bioinks with excellent bioactivity derived from gellan/alginate and thixotropic magnesium phosphate-based gels. Journal of Materials Chemistry B 25(8) (2020) 5500–5514.
  • [52] Chen Y., Wang Y., Yang Q., Liao Y., Zhu B., Zhao G., Shen R., Lu X., Qu S.: A novel thixotropic magnesium phosphate-based bioink with excellent printability for application in 3D printing. Journal of Materials Chemistry B 27(6) (2018) 4502–4513.
  • [53] Antich C., Vicente J., Jimenez G., Chocarro C., Carrillo E., Montanez E., Galvez-Martin P., Marchal J.A.: Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Acta Biomaterialia. (106) (2020) 114-123.
  • [54] Roseti L., Desando G., Cavallo C., Petretta M., Grigolo B.: Articular Cartilage Regeneration in Osteoarthritis. Cells (8) (2019) 1305.
  • [55] Lee J.S., Park H.S., Jung H., Lee H., Hong H., Lee Y.J., Suh Y.J., Lee O.J., Kim S.H., Park C.H.: 3D-printable photocurable bioink for cartilage regeneration of tonsil-derived mesenchymal stem cells. Additive Manufacturing (33) (2020) 101136.
  • [56] Nguyen D., Hagg D.A., Forsman A., Ekholm J., Nimkingratana P., Brantsing C., Kalogeropoulos T., Zaunz S., Concaro S., Brittberg M., Lindahl A., Gatenholm P., Enejder A., Simonsson S.: Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/ alginate bioink. Scientific Reports 7 (658) (2017).
  • [57] Markstedt K., Mantas A., Tournier I., Avila H.M., Hagg D., Gatenholm P.: 3D bioprinting human chondrocytes with nanocellulose. Alginate bioink for cartilage tissue engineering applications. BioMacromolecules (16) (2015) 1489–1496.
  • [58] Muller M., Ozturk E., Arlov O., Gatenholm P., Zenobi-Wong M.: Alginate sulfate-nanocellulose bioinks for cartilage bioprinting applications. Additive Manufacturing of Biomaterials, Tissues, and Organs 45 (1) (2017) 210–223.
  • [59] Luo W., Song Z., Wang Z., Wang Z., Li Z., Wang C., Liu H., Liu Q., Wang J.: Printability optimization of gelatin-alginate bioinks by cellulose nanofiber modification for potential meniscus bioprinting. Journal of Nanomaterials (2020).
  • [60] Kundu J., Shim J.-H., Jang J., Kim S.-W. Cho D.W.: An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. Journal Of Tissue Engineering and Regenerative Medicine 9 (11) (2013) 1286–1297.
  • [61] Bakarich S.E., Gorkin R., Panhuis M., Spinks G.M.: Three-dimensional printing fiber reinforced hydrogel composites. ACS Applied Materials and Interfaces 6 (18) (2014) 15998–60006.
  • [62] Yang X., Lu Z., Wu H., Li W., Zheng L., Zhao J.: Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Materials Science & Engineering C (83) (2018) 195–201.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc68fc0e-b5a3-4f12-97a6-95f7d61941f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.