PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of a Jeffery-Hamel flow between two rectangular inclined smooth walls using the differential Transform Method

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, the Differential Transform Method (DTM) is applied to derive a semi-analytic solution for the non-linear MHD (Magneto Hydro Dynamics) Jeffery-Hamel flow between rectangular inclined smooth planes. A non-linear ordinary differential equation of order four is obtained from Navier-Stokes equations using similar transformation. A comparison between DTM, PM (Perturbation Method) and numerical solution is shown here to validate the obtained results with its convergence analysis for different values of m and a Reynolds number in divergent channels.
Rocznik
Strony
47--57
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Department of Mathematics,S.V. National Institute of Technology Surat, India
autor
  • Department of Mathematics,S.V. National Institute of Technology Surat, India
Bibliografia
  • [1] Hamel, G. (1917). Spiralformige bewegungen zaher flussigkeiten. Jahresbericht der Deutschen Mathematiker-Vereinigung, 25, 34-60.
  • [2] Jeffery, G.B. (1915). The two-dimensional steady motion of a viscous fluid. Philosophical Magazine Series, 6, 29, 455-465.
  • [3] Akulenko, L.D., Georgevskii, D.V., & Kumakshev, S.A. (2004). Solutions of the Jeffery-Hamel problem regularly extendable in the Reynolds number. Fluid Dynamics, 39, 1, 12-28.
  • [4] Makinde, O.D., & Mhone, P.Y. (2006). Hermite-Pad approximation approach to MHD Jeffery Hamel flows. Appl. Math. Comput., 181, 966-972.
  • [5] Moghimi, S.M., Domairry, G., Soheil, S., Ghasemi E., & Bararnia, H. (2011). Application of homotopy analysis method to solve MHD Jeffery-Hamel flows in non-parallel walls. Advances in Engineering Software, 4, 108-113.
  • [6] Mustafa, I., Akgul, A., & Klman, A. (2013). A new application of the reproducing kernel Hilbert space method to solve MHD Jeffery-Hamel flows problem in non-parallel walls. Abstract and Applied Analysis, 2013, Article ID 239454.
  • [7] Sheikholeslami, M., Ganji, D.D., Ashorynejad, H.R., & Rokni, H.B. (2012). Analytical investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method. Applied Mathematics and Mechanics, 33, 1, 25-36.
  • [8] Turkyilmazoglu, M. (2014). Extending the traditional Jeffery-Hamel flow to stretchable convergent/divergent channels. Computers & Fluids, 100, 196-203.
  • [9] Naveed, A. (2014). Thermal radiation effects on flow of Jeffery fluid in converging and diverging stretchable channels. Neural Comput & Applic-Springer. DOI: 10.1007/s00521-016-2831-5.
  • [10] Singh, J., & Shishodia, Y.S. (2014). A modified analytical technique for Jeffery-Hamel flow using sumudu transform. J. Assoc. Arab. Univ. Basic Appl. Sci., 16, 11-15.
  • [11] Eman, A., Shaher, M., & Ahmad, A. (2014). Solving the fractional nonlinear Bloch system using the multi-step generalized differential transform method. Computers and Mathematics with Applications, 68, 2124-2132.
  • [12] Barzegar, M.G. (2015). Investigation of thermal radiation on traditional JefferyHamel flow to stretchable convergent/divergent channels. Case Studies in Thermal Engineering, 6, 28-39.
  • [13] Dogonchia, A.S., Divsalara, K., & Ganjia, D.D. (2016). Flow and heat transfer of MHD nano fluid between parallel plates the presence of thermal radiation. Computers Method in Applied Mechanics and Engineering, 310, 58-76.
  • [14] Vasile, M., & Remus, D. (2016). Optimal homotopy perturbation method for non-linear differential equations governing MHD Jeffery-Hamel flow with heat transfer problem. DOI: 10.1515/phys-2017-0006.
  • [15] Nagler, J. (2016). Jeffery-Hamel flow of nano fluid influenced by wall slip conditions. Journal of Nanofluid, 5, 960-967.
  • [16] Nagler, J. (2016). The electroosmotic magnetohydrodynamic nano flow. Journal of Nanofluid, 5, 898-910 (DOI:10.1166/jon.2016.1274).
  • [17] Nagler, J. (2017). Jeffery-Hamel flow of non-Newtonian fluid with nonlinear viscosity and wall friction. Appl. Math. Mech., 38, 6, 815-830.
  • [18] Khan, N., Sultan, F., Shaikh, A., Ara, A., & Rubbab, Q. (2016). Flow and heat transfer of MHD nano fluid between parallel plates the presence of thermal radiation. AIP ADVANCES, DOI: 10.1063/1.4967212.
  • [19] Ara, A., Khan, N., Naz, F., Raja, M., & Rubbab, Q. (2018). Numerical simulation for Jeffery-Hamel flow and heat transfer of micropolar fluid based on differential evolution algorithm. AIP ADVANCES (http://aip.scitation.org/toc/adv/8/1).
  • [20] Egashira, R., Fujikawa, T., Yaguchi, H., & Fujikawa, S. (2018). Microscopic and low Reynolds number flows between two intersecting permeable walls. Fluid Dyn. Res. DOI:10.1088/1873-7005/aab578.
  • [21] Zhou, J.K., &Pukhov (1986). Differential Transformation and Application for Electrical Circuits. Wuhan: Huazhong University Press, China.
  • [22] Khudiar, A.R., Haddad, S.A.M., & Khalaf, S.L. (2017). Restricted fractional differential transform for solving irrational order fractional differential equations. Chaos Solitons and Fractals, 101, 81-85.
  • [23] Kundu, B., Das, R., & Lee, S.K. (2017). Differential Transform method for exponential fins under sensible and latent heat transfer. Procedia Engineering, 127, 284-297.
  • [24] Patel, N.D., & Meher, R. (2017). Differential transform method for solving for fingero-imbibition phenomena arising in double phase flow through homogeneous porous media. Mathematical Sciences, IMRF Journals, 6, 1, 1-5.
  • [25] Patel, H.S., & Meher, R. (2016). Analytical investigation of Jeffery-Hamel flow by modified Adomian Decomposition Method. Ain Shams Engineering Journal.
  • [26] Khan, M., Aamir, A., & Asghar S. (2017). Flow between two rectangular inclined plane walls. Chinese Journal of Physics, 55, 1195-1201
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc66bb74-801b-44fb-acbb-9d14ca3ec4b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.