PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Materiały termoplastyczne wzmacniane włóknami o potencjalne do wykorzystania w wytwarzaniu addytywnym

Identyfikatory
Warianty tytułu
EN
Fiber-reinforced thermoplastic materials with potential for use in additive manufacturing
Języki publikacji
PL
Abstrakty
PL
W pracy omówiono ostatnie doniesienia literaturowe dotyczące modyfikacji wybranych materiałów termoplastycznych, w tym m.in. polilaktydu (PLA), polieteroeteroketonu (PEEK), poli(tereftalan etylenu) (PET), poliamidu (PA) i polikaprolaktonu (PCL), włókami ciągłymi oraz ciętymi o potencjale aplikacyjnym w technologii druku 3D. Dokonano oceny zastosowania w przemyśle oraz bioinżynierii.
EN
The following review considers recent publications regarding the modification of selected thermoplastic materials, including polylactide (PLA), polyetheretherketone (PEEK), poly(ethylene terephthalate) (PET) or polycaprolactone (PCL), enriched with continuous and chopped fibers, with potential in 3D printing technology. Industrial as well as bioengineering applications were evaluated.
Rocznik
Strony
13--20
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Katedra Inżynierii Materiałowej i Fizyki, Politechnika Krakowska im. Tadeusza Kościuszki
  • Katedra Inżynierii Materiałowej i Fizyki, Politechnika Krakowska im. Tadeusza Kościuszki
  • Katedra Inżynierii Materiałowej i Fizyki, Politechnika Krakowska im. Tadeusza Kościuszki
Bibliografia
  • [1] Kavad B.V., Pandey A.B., Tadavi M.V., Jakharia H.C.: A review paper on effects of drilling on glass fiber reinforced plastic. Procedia Technol. (14) (2014) 457–464, doi: 10.1016/j.prot- cy.2014.08.058.
  • [2] Omar N.W.Y., Shuaib N.A., Hadi M.H.J.A., Azmi A.I.: Mechanical properties of carbon and glass fibre reinforced composites produced by additive manufacturing. A short review. IOP Conf. Ser. Mater. Sci. Eng. 1 (670) (2019), doi: 10.1088/1757- 899X/670/1/012020.
  • [3] Shahrubudin N., Lee T.C., Ramlan R.: An overview on 3D printing technology. Technological, materials, and applications. Procedia Manuf. (35) (2019) 1286–1296, doi: 10.1016/j. promfg.2019.06.089.
  • [4] Çevik Ü., Kam M.: A review study on mechanical properties of obtained products by FDM method and metal/polymer composite filament production. J. Nanomater. (2020) (2020), doi: 10.1155/2020/6187149.
  • [5] Caban J., Szala M., Kęsik J., Czuba Ł.: Use of 3D printing in automotive applications. Autobusy 6 (2017) 573–579.
  • [6] Peng Y., Wu Y., Wang K., Gao G., Ahzi S.: Synergistic reinforcement of polyamide-based composites by combination of short and continuous carbon fibers via fused filament fabrication. Compos. Struct. September (207) (2018) 232–239, doi: 10.1016/j.compstruct.2018.09.014.
  • [7] Ramamoorthy S.K., Skrifvars M., Persson A.: A review of natural fibers used in biocomposites. Plant, animal and regenerated cellulose fibers. Polym. Rev. 1 (55) (2015) 107–162, doi: 10.1080/15583724.2014.971124.
  • [8] Karimah A., Ridho M.R., Munawar S.S., Adi D.S., Ismadi, Damayanti B., Subiyanto B., Fatriasari W., Fudholic A.: A review on natural fibers for development of eco-friendly bio-composite. Characteristics, and utilizations. J. Mater. Res. Technol. (13) (2021) 2442–2458, doi: 10.1016/j.jmrt.2021.06.014.
  • [9] George J., Sreekala M.S., Thomas S.: A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym. Eng. Sci. 9 (41) (2001) 1471–1485, doi: 10.1002/pen.10846.
  • [10] Aizenshtein E.M.: Production and use of chemical fibers in 2010. Fibre Chem. 6 (43) (2012) 395–405, doi: 10.1007/ s10692-012-9372-1.
  • [11] Frank E., Hermanutz F., Buchmeiser M.R.: Carbon fibers. Precursors, manufacturing, and properties. Macromol. Mater. Eng. 6 (297) (2012) 493–501, doi: 10.1002/mame.201100406.
  • [12] Laredo Dos Reis J.M.: Mechanical characterization of fiber reinforced polymer concrete. Mater. Res. 3 (8) (2005) 357– 360, doi: 10.1590/s1516-14392005000300023.
  • [13] Ramesh P., Prasad B.D., Narayana K.L.: Effect of MMT clay on mechanical, thermal and barrier properties of treated aloevera fiber/PLA-hybrid biocomposites. Silicon 7 (12) (2020) 1751–1760, doi: 10.1007/s12633-019-00275-6.
  • [14] Faruk O., Bledzki A.K., Fink H.P., Sain M.: Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 11 (37) (2012) 1552–1596, doi: 10.1016/j.progpolymsci.2012.04.003.
  • [15] Dul S., Fambri L., Pegoretti A.: High-performance polyamide/carbon fiber composites for fused filament fabrication. Mechanical and functional performances. J. Mater. Eng. Perform. 7 (30) (2021) 5066–5085, doi: 10.1007/s11665- 021-05635-1.
  • [16] de Toro E.V., Sobrino J.C., Martínez A.M., Eguía V.M., Pérez J.A.: Investigation of a short carbon fibre-reinforced polyamide and comparison of two manufacturing processes. Fused deposition modelling (FDM) and polymer injection moulding (PIM). Materials (Basel). 3 (13) (2020), doi: 10.3390/ ma13030672.
  • [17] Le Duigou A., Castro M., Bevan R., Martin N.: 3D printing of wood fibre biocomposites. From mechanical to actuation functionality. Mater. Des. (96) (2016) 106–114, doi: 10.1016/j. matdes.2016.02.018.
  • [18] Faludi G., Dora G., Imre B., Renner K., Mõczõ J., Pukánszky B.: PLA/lignocellulosic fiber composites. Particle characteristics, interfacial adhesion, and failure mechanism. J. Appl. Polym. Sci. 4 (131) (2014) 1–10, doi: 10.1002/app.39902.
  • [19] Brenken B., Barocio E., Favaloro A., Kunc V., Pipes R.B.: Fused filament fabrication of fiber-reinforced polymers: A review. Addit. Manuf. (21) (2010) 1–16, doi: 10.1016/j. addma.2018.01.002.
  • [20] Gudayu A.D., Steuernagel L., Meiners D., Gideon R.: Characterization of the dynamic mechanical properties of sisal fiber reinforced PET composites. Effect of fiber loading and fiber surface modification. Polym. Polym. Compos. 9 (29) (2021) S719–S728, doi: 10.1177/09673911211023032.
  • [21] Sharma K., Jayaraman R.: Effect of FDM printing parameters on the properties of carbon fiber reinforced PET-G composite (2020), doi: 10.32393/csme.2020.1285.
  • [22] Wu S.H., Wang F.Y., Ma C.C.M., Chang W.C., Kuo C.T., Kuan H.C., Chen W.J.: Mechanical, thermal and morphological properties of glass fiber and carbon fiber reinforced polyamide-6 and polyamide-6/clay nanocomposites. Mater. Lett. 6 (49) (2001) 327–333, doi: 10.1016/S0167-577X(00)00394-3.
  • [23] Karsli N.G., Aytac A.: Tensile and thermomechanical properties of short carbon fiber reinforced polyamide 6 composites. Compos. Part B Eng. (51) (2013) 270–275, doi: 10.1016/j. compositesb.2013.03.023.
  • [24] Matsuzaki R., Ueda M., Namiki M., Jeong T.K., Asahara H., Horiguchi K., Nakamura T., Todoroki A., Hirano Y.: Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci. Rep. (6) (2016) 1–7, doi: 10.1038/ srep23058.
  • [25] Tian X., Liu T., Yang C., Wang Q., Li D.: Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos. Part A Appl. Sci. Manuf. (88) (2016) 198–205, doi: 10.1016/j.compositesa.2016.05.032.
  • [26] Yang C., Tian X., Liu T., Cao Y., Li D.: 3D printing for continuous fiber reinforced thermoplastic composites. Mechanism and performance. Rapid Prototyp. J. 1 (23) (2017) 209–215, doi: 10.1108/RPJ-08-2015-0098.
  • [27] Li N., Li Y., Liu S.: Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. J. Mater. Process. Technol. (238) (2016) 218–225, doi: 10.1016/j. jmatprotec.2016.07.025.
  • [28] Ma Y., Ueda M., Yokozeki T., Sugahara T., Yang Y., Hamada H.: A comparative study of the mechanical properties and failure behavior of carbon fiber/epoxy and carbon fiber/polyamide 6 unidirectional composites. Compos. Struct. (160) (2017) 89–99, doi: 10.1016/j.compstruct.2016.10.037.
  • [29] He Q., Wang H., Fu K., Ye L.: 3D printed continuous CF/PA6 composites. Effect of microscopic voids on mechanical performance. Compos. Sci. Technol. (191) (2020) 108077, doi: 10.1016/j.compscitech.2020.108077.
  • [30] Haleem A., Javaid M., Vaish A., Vaishya R.: Three-dimensional-printed polyether ether ketone implants for orthopedics. Indian J. Orthop. 2 (53) (2019) 377–379.
  • [31] von Campe G., Pistracher K.: Patient specific implants (PSI). Cranioplasty Neurosurg. Clin. Routine. (12439) (2020) 1–9.
  • [32] Gupta A., Subhas N., Primak A.N., Nittka M., Liu K.: Metal artifact reduction. Standard and advanced magnetic resonance and computed tomography techniques. Radiol. Clin. North Am. 3 (53) (2015) 531–547, doi: 10.1016/j.rcl.2014.12.005.
  • [33] Lee M.J., Kim S., Lee S.A., Song H.T., Huh Y.M., Kim D.H., Han S.H., Suh J.S.: Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multidetector CT. Radiographics. 3 (27) (2007) 791–803, doi: 10.1148/rg.273065087.
  • [34] Schwitalla A.D., Abou-Emara M., Spintig T., Lackmann J., Müller W.D.: Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. J. Biomech. 1 (48) (2015) 1–7, doi: 10.1016/j.jbio- mech.2014.11.017.
  • [35] Sarot J.R., Contar C.M.M., Da Cruz A.C.C., De Souza Magini R.: Evaluation of the stress distribution in CFR-PEEK dental implants by the three-dimensional finite element method. J. Mater. Sci. Mater. Med. 7 (21) (2010) 2079–2085, doi: 10.1007/s10856-010-4084-7.
  • [36] Neumann E.A.F., Villar C.C., França F.M.G.: Fracture resistance of abutment screws made of titanium, polyetheretherketone, and carbon fiber-reinforced polyetheretherketone. Braz. Oral Res. 1 (28) (2014) 1–5, doi: 10.1590/1807-3107bor-2014. vol28.0028.
  • [37] Addai Asante N., Wag Y., Bakhet W., Kareem S., Owusu K.A., Hu Y., Appiah M.: Ambient temperature sulfonated carbon fiber reinforced PEEK with hydroxyapatite and reduced graphene oxide hydroxyapatite composite coating. J. Biomed. Mater. Res. – Part B Appl. Biomater. 12 (109) (2021) 2174– 2183, doi: 10.1002/jbm.b.34865.
  • [38] Krätzig T., Mende, K.C., Mohme M., Kniep H., Dreimann M., Stangenberg M., Westphal M., Gauer T., Eicker S.O.: Carbon fiber-reinforced PEEK versus titanium implants: an in vitro comparison of susceptibility artifacts in CT and MR imaging. Neurosurg. Rev. 4 (44) (2021) 2163–2170, doi: 10.1007/ s10143-020-01384-2.
  • [39] Bonnheim N., Ansari F., Regis M., Bracco P., Pruitt L.: Effect of carbon fiber type on monotonic and fatigue properties of orthopedic grade PEEK. J. Mech. Behav. Biomed. Mater. (90) (2019) 484–492, doi: 10.1016/j.jmbbm.2018.10.033.
  • [40] Arevalo S.E., Pruitt L.A.: Nanomechanical analysis of medical grade PEEK and carbon fiber-reinforced PEEK composites. J. Mech. Behav. Biomed. Mater. (111) (2020) 104008, doi: 10.1016/j.jmbbm.2020.104008.
  • [41] Sandler J., Werner P., Shaffer M.S.P., Demchuk V., Altstädt V., Windle A.H.: Carbon-nanofibre-reinforced poly(ether ether ketone) composites. Compos. Part A Appl. Sci. Manuf. 8 (33) (2002) 1033–1039, doi: 10.1016/S1359-835X(02)00084-2.
  • [42] Lee W.T., Koak J.Y., Lim Y.J., Kim S.K., Kwon H.B., Kim M.J.: Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants. J. Biomed. Mater. Res. – Part B Appl. Biomater. 4 (100 B) (2012) 1044–1052, doi: 10.1002/jbm.b.32669.
  • [43] Abdal-Hay A., Abdelrazek Khalil K., Al-Jassir F.F., Gamal-Eldeen A.M.: Biocompatibility properties of polyamide 6/PCL blends composite textile scaffold using EA.hy926 human endothelial cells. Biomed. Mater. 3 (12) (2017), doi: 10.1088/1748-605X/aa6306.
  • [44]Worch J.C., Weems A.C., Yu J., Arno M.C., Wilks T.R., Huckstepp R.T.R., O’Reilly R.K., Becker M.L., Dove A.P.: Elastomeric polyamide biomaterials with stereochemically tuneable mechanical properties and shape memory. Nat. Commun. 1 (11) (2020) 1–11, doi: 10.1038/s41467-020-16945-8.
  • [45] Qiao B., Li J., Zhu Q., Guo S., Qi X., Li W., Wu J., Liu Y., Jiang D.: Bone plate composed of a ternary nano-hydroxy- apatite/polyamide 66/glass fiber composite. Biomechanical properties and biocompatibility. Int. J. Nanomedicine. 1 (9) (2014) 1423–1432, doi: 10.2147/IJN.S57353.
  • [46] Qiao B., Zhou D., Dai Z., Zhao W., Yang Q., Xu Y., Li X., Wu J., Guo S., Jiang D.: Bone plate composed of a ternary nano- hydroxyapatite/polyamide 66/glass fiber composite: bio- compatibility in vivo and internal fixation for canine femur fractures. Adv. Funct. Mater. 22 (29) (2019) 1–9, doi: 10.1002/ adfm.201808738.
  • [47] DeStefano V., Khan S., Tabada A.: Applications of PLA in modern medicine. Eng. Regen. April (1) (2020) 76–87, doi: 10.1016/j.engreg.2020.08.002.
  • [48] Ma X., Wu N., Liu P., Cui H.: Fabrication of highly efficient phenylphosphorylated chitosan bio-based flame retardants for flammable PLA biomaterial. Carbohydr. Polym. (287) (2022) 119317.
  • [49] Chen X., Li Y., Gu N.: A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair. Biomed. Mater. 4 (5) (2010), doi: 10.1088/1748-6041/5/4/044104.
  • [50] Malikmammadov E., Tanir T.E., Kiziltay A., Hasirci V., Hasirci N.: PCL and PCL-based materials in biomedical applications. Journal of Biomaterials Science. 7–9 (29) (2018), doi: 10.1080/09205063.2017.1394711.
  • [51] Park Y.J., Cha J.H., Bang S.I., Kim S.Y.: Clinical Application of three-dimensionally printed biomaterial polycaprolactone (PCL) in augmentation rhinoplasty. Aesthetic Plast. Surg. 2 (43) (2019) 437–446, doi: 10.1007/s00266-018-1280-1.
  • [52] Theeranattapong T., Luangwattanawilai T., Suwanprateeb J., Suvannapruk W., Chumnanvej S., Hemstapat W.: Physical and mechanical characterizations of oxidized regenerated cellulose/polycaprolactone composite for use as a synthetic dura mater. Key Eng. Mater. (659) (2015) 19–23, doi: 10.4028/ www.scientific.net/KEM.659.19.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc643ac0-f50c-42fe-9d92-8e481b13f77f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.