PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gas hold-up analysis in an unsteady stirred vessel by means of infinite series

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of a liquid level sensor made it possible to measure changes in gas hold-up over time in a stirred tank during unsteady mixing. These results were subjected to Fourier time series analysis and a model of gas hold-up changes in time was proposed. It allowed one to determine the model value of gas hold-up, which can be useful for characterizing gas hold-up during unsteady mixing and as a comparison to gas hold-up during steady mixing. The characteristic frequency was also determined, which corresponds to about twice the oscillation frequency. Model gas hold-up values for coalescing and non-coalescing systems were compared. Moreover, the change of the gas hold-up at constant maximum stirrer rotation frequency and variable gas flow rate for different oscillation frequencies was investigated.
Rocznik
Strony
30--35
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wz.
Twórcy
  • Poznan University of Technology, Department of Chemical Engineering and Equipment, 4 Berdychowo street, 60-965 Poznan
  • Poznan University of Technology, Department of Chemical Engineering and Equipment, 4 Berdychowo street, 60-965 Poznan
Bibliografia
  • 1. Doran, P.M. (2013). Mixing. In P. M. Doran, (Ed.), Bioprocess engineering principles (2nd ed.) (pp. 255–332). Orlando: Academic Press
  • 2. Moucha, T., Linek, V. & Prokopová, E. (2003). Gas hold-up, mixing time and gas–liquid volumetric mass transfer coefficient of various multiple-impeller configurations: Rushton turbine, pitched blade and techmix impeller and their combinations. Chem. Eng. Sci. 58(9), 1839–1846. DOI: 10.1016/S0009-2509(02)00682-6.
  • 3. Bouaifi, M., Hebrard, G., Bastoul, D., & Roustan, M. (2001). A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas–liquid reactors and bubble columns. Chem. Eng. Process.: Process Intensif. 40(2), 97–111. DOI: 10.1016/S0255-2701(00)00129-X.
  • 4. Khare, A.S., & Niranjan, K. (1999). An experimental investigation into the effect of impeller design on gas hold-up in a highly viscous Newtonian liquid. Chem. Eng. Sci. 54(8), 1093–1100. DOI: 10.1016/S0009-2509(98)00479-5.
  • 5. Yoshida, M., Kitamura, A., Yamagiwa, K., & Ohkawa, A. (1996). Gas hold-up and volumetric oxygen transfer coefficient in an aerated agitated vessel without baffles having forward-reverse rotating impellers. Can. J. Chem. Eng. 74(1), 31–39. DOI: 10.1002/cjce.5450740105.
  • 6. Kamieński, J. (2004). Mieszanie układów wielofazowych. Warszawa, Poland: Wydawnictwa Naukowo-Techniczne (in Polish).
  • 7.Kracík, T., & Moucha, T. (2022). Influence of viscosity on gas holdup formation in stirred tank reactors. Chem. Pap. 76(1), 301–307. DOI: 10.1007/s11696-021-01857-8.
  • 8. Frankiewicz, S., & Woziwodzki, S. (2022). Gas hold-up and mass transfer in a vessel with an unsteady rotating concave blade impeller. Energies 15(1). DOI: 10.3390/en15010346.
  • 9. Woziwodzki, S. (2017). Mieszanie nieustalone – analiza i wybrane zastosowania. Poznań, Poland: Wydawnictwo Politechniki Poznańskiej (in Polish).
  • 10. Yoshida, M. (2011). Gas-liquid mass transfer in an unbaffled vessel agitated by unsteadily forward-reverse rotating multiple impellers. In El-Amin M. (Ed.) Mass Transfer in Multiphase Systems and its Applications. IntechOpen, Retrieved February 30, 2011 from IntechOpen https://intechopen.com/chapters/13531. DOI: 10.5772/14140.
  • 11. Yoshida, M., Ito, A., Yamagiwa, K., Ohkawa, A., Abe, M., Tezura, S., & Shimazaki, M. (2001). Power characteristics of unsteadily forward–reverse rotating impellers in an unbaffled aerated agitated vessel. J. Chem. Technol. Biotechnol. 76(4), 383–392. DOI: 10.1002/jctb.394.
  • 12. Yoshida, M., Taguchi, Y., Yamagiwa, K., Ohkawa, A., Abe, M., Tezura, S., & Shimazaki, M. (2003). Design and operation of unbaffled aerated agitated vessels with unsteadily forward–reverse rotating impellers handling viscous Newtonian liquids. J. Chem. Technol. Biotechnol. 78(4), 474–483. DOI: 10.1002/jctb.813.
  • 13. Robinson, C.W., & Wilke, C.R. (1974). Simultaneous measurement of interfacial area and mass transfer coefficients for a well-mixed gas dispersion in aqueous electrolyte solutions. AIChE J. 20(2), 285–294. DOI: 10.1002/aic.690200212.
  • 14. Frankiewicz, S., & Woziwodzki, S. (2021). Nowe techniki pomiaru stopnia zatrzymania gazu w mieszalnikach mechanicznych. In XXXVIII Międzynarodowe Sympozjum im. Bolesława Krzysztofika AQUA 2021: Problemy Inżynierii Środowiska, 22 June 2021 (pp. 57–58). Płock, Poland: Politechnika Warszawska (in Polish).
  • 15. Frankiewicz, S., Woziwodzki, S., & Kuczora, A. (2019). Zastosowanie analizy obrazu do określania stopnia zatrzymana gazu w mieszalniku. In III Ogólnopolskie Sympozjum Chemii Bioorganicznej, Organicznej i Biomateriałów, (pp. 319–320). Poznań, Poland: Politechnika Poznańska (in Polish).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc629fdd-f4bc-476f-ae0c-0d10ae80bf6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.