PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distribution and ecological risk evaluation of bioavailable phosphorus in sediments of El Temsah Lake, Suez Canal

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Phosphorus reactivity and bioavailability in lake sediments is determined by diverse fractions of phosphorus (P) and their distribution. To gain deeper insights into P dynamics in Lakes, sediments from El Temsah Lake were investigated for water soluble P (WSP), readily desorbable P (RDP), algal available P (AAP) and Olsen-P using different chemical extraction methods. Total P (TP), organic P (OP), inorganic P (IP) contents, were also investigated. The TP, OP and IP concentrations in the sediments were 598.39 µg/g, 199.76 µg/g and 398.63 µg/g, correspondingly. Concentrations of the bioavailable P in the sediments followed the order AAP (48.42 µg/g)>WSP (14.60 µg/g)>RDP (1.82 µg/g)>Olsen-P (1.50 µg/g). Pearson correlation analysis exposed that there were significant correlations among the bioavailable P fractions concentrations and the TP concentrations (r=0.83; p>0.01, r=0.94; p>0.01, r=0.62; p>0.05); for WSP, AAP, and Olsen-P respectively. Moreover, there were no obvious associations amongst total P and N, Al, Ca, Fe, Mg, Mn, and OM in the sediments. The outcomes of phosphorus ecological risk assessment in sediments by single pollution standard index method revealed that the standard index of TP varied from 0.19 to 1.85. It demonstrated that the ecological pollution risks of phosphorus in El Temsah Lake sediments was comparatively low.
Czasopismo
Rocznik
Strony
287--298
Opis fizyczny
Bibliogr. 70 poz., map., rys., tab., wykr.
Twórcy
  • Department of Aquatic Environment, Faculty of Fish Resources, Suez University, Suez, Egypt
  • Department of Environmental Studies, Institute of Graduate Studies & Research – Alexandria University, Egypt
  • Basic and Applied Science Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
  • National Institute of Oceanography & Fisheries (NIOF), Suez, Egypt
  • National Institute of Oceanography & Fisheries (NIOF), Suez, Egypt
Bibliografia
  • 1. Abdel Sabour, M.F., Ali, R.O., Khalil, M.T., Attwa, A.H.A., 1998. Indicators of Lake Temsah potential pollution by some heavy. Metals ii) heavy metals in sediment. International conference on hazardous waste sources, effects and management.
  • 2. Alvarez-Guerra, M., Viguri, J.R., Casado-Martínez, M.C., Del-Valls, T.A., 2010. Sediment quality assessment and dredged material management in Spain: Part I, application of sediment quality guidelines in the Bay of Santande. Integr. Environ. Assess. Manag. 3, 529-538. https://doi.org/10.1897/IEAM_2006-055.1
  • 3. Anderson, L.A., Sarmiento, J.L., 1994. Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem. Cy. 8, 65-80. https://doi.org/10.1029/93GB03318
  • 4. Anjos, S.M., De Ros, L.F., De Souza, R.S., De Assis Silva, C.M.,Sombra, C.L., et al., 2000. Depositional and diagenetic controls on the reservoir quality of Lower Cretaceous Pendencia sandstones, Potiguar rift basin, Brazil. AAPG Bulletin 84 (11), 1719-1742. https://doi.org/10.1306/8626C375-173B-11D7-8645000102C1865D
  • 5. Aspila, K.I., Agemian, H., Chau, A.S.Y., 1976. Semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 101, 187-197. https://doi.org/10.1039/an9760100187
  • 6. Aydina, I., Aydin, F., Saydut, A., Hamamci, C., 2009. A sequential extraction to determine the distribution of phosphorus in the seawater and marine surface sediment. J. Hazard. Mater. 168, 664-669. https://doi.org/10.1016/j.jhazmat.2009.02.095
  • 7. Bastami, K.D., Neyestani, M.R., Zadeh, M.E., Haghparast, S.,Alavi, C., Fathi, S., Nourbakhsh, S., Shirzadi, E.A., Parhizgar, R.,2016. Geochemical speciation, bioavailability and source identi- fication of selected metals in surface sediments of the Southern Caspian Sea. Marine Pollut. Bull. 114 (2), 1014-1023. https://doi.org/10.1016/j.marpolbul.2016.11.025
  • 8. Black, C.A., 1965. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Inc.,Madison, WI.
  • 9. Bo, L., Wang, D., Zhang, G., Wang, C., 2014. Evaluating the relationship between phosphorus bioavailability and speciation in sediments from rural rivers in the Tahiu Lake area, China. Pol. J. Environ. Stud. 23, 1933-1940. https://doi.org/10.15244/pjoes/24924
  • 10. Bortleson, 1971. The chemical investigation of recent lake sediments from Wisconsin lakc and their interpretation. U.S. Environ. Prot. Agency, 1601OEIIRO 3/71 Water Pollut. Contr. Res. Ser. Washington, D.C.
  • 11. Bortleson, G.C., Lee, F., 1974. Phosphorus, iron, and manganese distribution in sediment cores of six Wisconsin lakes. Limnol. Oceanogr. 19 (5), 794-801. https://doi.org/10.4319/lo.1974.19.5.0794
  • 12. Branom, J.R., Sarkar, D., 2004. Phosphorus bioavailability in sediments of a sludge disposal lake. Environ. Geosc. 11, 42-52. https://doi.org/10.1306/eg.08220303021
  • 13. Bremner, J.M., 1960. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 55, 11-33. https://doi.org/10.1017/S0021859600021572
  • 14. Bridgeman, T.B., Chaffin, J.D., Kane, D.D., Conroy, J.D.,Panek, S.E., Armenio, P.M., 2012. From River to Lake: Phosphorus partitioning and algal community compositional changes in Western Lake Erie. J. Great Lakes Res. 38 (1), 90-97. https://doi.org/10.1016/j.jglr.2011.09.010
  • 15. Carritt, D.E., Goodall, S., 1954. Sorption reactions and some ecological implications. Deep-Sea Res. 1, 224-243.
  • 16. Chen, Y.S.R., Bulter, J.N., Stumm, W., 1973. Kinetic study of phosphate reaction with aluminum oxide and kaolinit. Environ. Sci. Technol. 7, 327-332. https://doi.org/10.1021/es60076a007
  • 17. Dapeng, L., Yong, H., Chengxin, F., Yan, Y., 2011. Contributions of phosphorus on sedimentary phosphorus bioavailability under sediment resuspension conditions. Chem. Eng. J. 168, 1049-1054. https://doi.org/10.1016/j.cej.2011.01.082
  • 18. De Groot, C., 1991. The influence of FeS on the inorganic phosphorus retention in lakes determined from ass balance and sediment core calculations. Wat. Res. 27, 659-668.
  • 19. Donia, N., 2011. Water quality management of lake Temsah, Egypt using geographical information system (GIS). IJESE 2, 1-8. http://www.pvamu.edu/texged
  • 20. Elser, J.J., Andersen, T., Baron, J.S., Bergström, A., Jansson, M.,Kyle, M., Nydick, K.R., Steger, L., Hessene, D.O., 2009. Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326 (5954), 835-837. https://doi.org/10.1126/science.1176199
  • 21. Folk, R.L., 1974. Petrology of sedimentary rocks. Austin: Hemphill Pub. Co.
  • 22. Fu, Y., Zhoh, Y., Li, J., 2000. Sequential fractionation of reactive phosphorus in the sediment of a shallow eutrophic lake Donghu Lake. China, Int. J. Environ. Sci. 12, 57-62.
  • 23. Gao, L., Zhou, J.M., Yang, H., Chen, J., 2005. Phosphorus fractions in sediment profiles and their potiential contributions to eutrophication in Dianchi Lake. Environ. Geol. 48, 835-844. https://doi.org/10.1007/s00254- 005- 0005- 3
  • 24. Gonsiorezyk, T., Casper, P., Koschel, R., 1998. Phosphorus binding forms in the sediment of an oligotrophic and an eutrophic hardwater lake of the Baltic Lake District (Germany). Water Sci. Technol. 37 (3), 51-58. https://doi.org/10.2166/wst.1998.0173
  • 25. Gunduz, B., Aydın, F., Aydin, I., Hamamci, C., 2011. Study of phosphorus distribution in coastal surface sediment by sequential extraction procedure (NE Mediterranean Sea, Antalya-Turkey). Microchem. J. 98, 72-76. https://doi.org/10.1016/j.microc.2010.11.006
  • 26. Gu, Y.G., Ouyang, J., Ning, J.J., Wang, Z.H., 2017. Distribution and sources of organic carbon, nitrogen and their isotopes in surface sediments from the largest mariculture zone of the eastern Guangdong coast, South China. Mar. Pollut. Bull. 120, 286-291. https://doi.org/10.1016/j.marpolbul.2017.05.013
  • 27. Hakanson, L., Jansson, M., 1983. Principles of Lake Sedimentology. Springer-Verlag, Berlin.
  • 28. Han, H., Lu, X., Burger, D.F., Joshi, U.M., Zhang, L., 2014. Nitrogen dynamics at the sediment-water interface in a tropical reservoir. Ecol. Eng. 73, 146-153. https://doi.org/10.1016/j.ecoleng.2014.09.016
  • 29. Hu, J., Shen, Q., Liu, Y.D., 2007. Mobility of different phosphorus pools in the sediment of Lake Dianchi during cyanobacterial blooms. Environ. Monit. Assess. 132, 141-153. https://doi.org/10.1007/s10661-006-9509-x
  • 30. Huang, B., Guo, Z., Xiao, X., Zeng, P., Peng, C., 2019. Changes in chemical fractions and ecological risk prediction of heavy metals in estuarine sediments of Chunfeng Lake estuary. China.Mar. Pollut. Bull. 138, 575-583. https://doi.org/10.1016/j.marpolbul.2018.12.015
  • 31. Hsu, P.H., 1965. Fixation of phosphate by aluminum and iron inacidic soils. Soil Sci. 99, 398-402.
  • 32. Jensen, H., Kristensen, P., Jeppesen, E., Skytthe, A., 1992. Iron: phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia 235/236, 731-743. https://doi.org/10.1007/BF00026261
  • 33. Kaiser, M.F., Amin, A.S., Aboulela, H.A., 2009. Environmental Hazards in the El-Temsah Lake, Suez Canal District, Egypt. Adv. Geosci. Remote Sens. 57-70. https://doi.org/10.5772/8335
  • 34. Knosche, R., 2006. Organic sediment nutrient concentrations and their relationship with the hydrological connectivity of floodplain waters (River Havel, NE Germany). Hydrobiologia 560, 63-76. https://doi.org/10.1007/s10750-005-0983-x
  • 35. Kisand, A., Noges, P., 2003. Sediment phosphorus release in phytoplankton dominated versus macrophyte dominated shallow lakes: importance of oxygen conditions. Hydrobiologia 506-509, 129-133. https://doi.org/10.1023/B:HYDR.0000008620.87704.3b
  • 36. Li, Y., Peng, T., 2002. Latitudinal change of remineralization ratios in the oceans and its implication for nutrient cycles. Global Biogeochem. Cy. 16 (4). https://doi.org/10.1029/2001GB001828Yuan-Hui
  • 37. Liu, H.L., Jin, X.C., Jing, Y.F., 1999. Environmental dredging technology of lake sediment. Chinese Eng. Sci. 1, 81-84.
  • 38. Liu, L., Zhang, Y., Efting, A., Barrow, T., Qian, B., Fang, Z., 2012. Modeling bioavailable phosphorus via other phosphorus fractions in sediment cores from Jiulongkou Lake, China. Environ. Earth Sci. 65 (3), 945-956. https://doi.org/10.1007/s12665-011-1295-2
  • 39. Loring, D.H., Rantala, R.T.T., 1992. Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Sci. Revi. 32, 235-283. https://doi.org/10.1016/0012-8252(92)90001-A
  • 40. Mackereth, F.J.H., 1966. Some chemical observations on post-glacial lake sediments. Philos. T. Roy. Soc. B 250, 165-213
  • 41. Mudroch, A., Azcue, O.M., 1995. Manual of Aquatic Sediment Sampling. Lewis Publisher, Ann. Arbor, Michigan, USA.
  • 42. Okbah, M.A., 2006. Bioavailablility of phosphorus in Abu Qir and Lake Edku sediments, Mediterranean Sea. Egypt. Chem. Ecol. 6, 451-462. https://doi.org/10.1080/02757540601025006
  • 43. Oregioni, B., Aston, S.R., 1984. The determination of selected trace metals in marine sediments by flame atomic absorption spectrophotometry. IAEA Monaco Laboratory Internal Report. UNEP, reference methods for marine pollution studies No 38.
  • 44. Pardo, P., Lopez-Sanchez, J.F., Rauret, G., 2003. Relationships between phosphorus fractionation and major components in sediments using the SMT harmonized extraction procedure. Anal. Bioanal. Chem. 376, 248-254.
  • 45. Pedro, T., Kimberley, S., Fernando, P., 2013. Dynamics of phosphorus in sediments of a naturally acidic lake. Int. J. Sediment Res.28 (1), 90-102. https://doi.org/10.1007/s00216-003-1897-y
  • 46. Peng, R., 2016. Spatiotemporal distribution and stoichiometry characteristics of carbon, nitrogen and phosphorus in surface soils of freshwater and brackish marshes in the Min River estuary. China Environ. Sci. 36, 917-926 (in Chinese).
  • 47. Penn, M.R., Auer, M.T., Van Orman, E.L., Korienek, J.J., 1995. Phosphorus Diagenesis in Lake Sediments: Investigations using Fractionation Techniques. Mar. Freshwater Res. 46, 89-99. https://doi.org/10.1071/MF9950089
  • 48. Perkins, R.G., Underwood, G.J.C., 2001. The potential for phosphorus release across the sediment—water interface in a eutrophic reservoir dosed with ferric sulphate. Water Res. 35, 1399-1406. https://doi.org/10.1016/S0043-1354(00)00413-9
  • 49. Pettersson, K., Bostrom, B., Jacobsen, O.S., 1988. Phosphorus in sediments — speciation and analysis. Hydrobiologia 170, 91-101. https://doi.org/10.1007/BF00024900
  • 50. Psenner, R., Pucsko, R., 1988. Phosphorus fractionation: advantages and limits of the method for the study of sediment P origins and interactions. Arch. Hydrobiol. Beih. 30, 43-59.
  • 51. Reddy, K.R., Wetzel, R.G., Kadlec, R.H., 2005. Biogeochemistry of phosphorus in wetlands. In: Sims, J.T., Sharpley, A.N. (Eds.), Phosphorus: agriculture and the environment. Soil Science Society of America, Madison, 263-316.
  • 52. Redfield, A.C., Ketchum, B.H., Richards, F.A., et al., 1963. The Influence of Organisms on the Composition of the Sea Water. In: In:Hill, M.N., Ed., The Sea, 2. Interscience Publishers, New York, 26-77.
  • 53. Ruban, V., López-Sánchez, J.F., Pardo, P., Rauret, G., Muntau, H., Quevauviller, Ph., 1999. Selection and evaluation of sequential extraction procedures for the determination of phosphorus forms in lake sediment. J. Environ. Monitor. 1, 51-56. https://doi.org/10.1039/A807778I
  • 54. Ruban, V., Lopez-Sanchez, J.F, Pardo, P., Rauret, G., Muntau, H., Quevauviller, P., 2001. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments — A synthesis of recent works. Fresenius. J. Anal. Chem. 370 (2-3), 224. https://doi.org/10.1007/s002160100753
  • 55. Ruttenberg, K.C., 1992. Development of sequential extraction method for different forms of phosphorus in marine sediments. Limnol. Oceanogr. 37, 1460-1482. https://doi.org/10.4319/lo.1992.37.7.1460
  • 56. Rydin, E., Brunberg, A.K., 1998. Seasonal dynamics of phosphorus in Lake Erken surface sediments. Archiv für Hydrobiologie 51, 157-167. https://doi.org/10.1023/A:1004050204587
  • 57. Rydin, E., 2000. Potentially mobile phosphorus in Lake Erken sediment. Water Res. 34, 2037-2042. https://doi.org/10.1016/S0043-1354(99)00375-9
  • 58. Said, T.O., El Agroudy, N.A., 2006. Assessment of PAHs in water and fish tissues from Great Bitter and El Temsah lakes, Suez Canal, as chemical markers of pollution sources. Chem. Ecol. 22, 159-173. https://doi.org/10.1080/02757540500526476
  • 59. Sardans, J., Rivas-Ubach, A., Penuelas, J., et al., 2012. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: A review and perspectives. Biogeochemistry 111 (1-3), 1-39. https://doi.org/10.1007/s10533-011-9640-9
  • 60. Sekhara, K.C., Charya, N.S., Kamalaa, C.T., Suman, D.S., Rajb, A., Raoc, S., 2003. Fractionation studies and bioaccumulation of sediment-bound heavy metals in Kolleru lake by edible fish. Environ. Int. 29, 1001-1008. https://doi.org/10.1016/S0160-4120(03)00094-1
  • 61. Soliman, N.F., El Zokm, G.M., Okbah, M.A., 2017. Evaluation of phosphorus bioavailability in El Mex Bay and Lake Mariut sediments. Int. J. Sediment Res. 32, 432-441. https://doi.org/10.1016/j.ijsrc.2017.05.006
  • 62. Soliman, NF., Younis, A.M., Elkady, E.M., Mohamedein, L.I., 2018. Geochemical associations, risk assessment, and source identification of selected metals in sediments from the Suez Gulf, Egypt. Hum. Ecol. Risk Assess. 25 (3), 1-17. https://doi.org/10.1080/10807039.2018.1451301
  • 63. Soliman, N.F., Younis, A.M., Elkady, E.M., 2019. An insight into fractionation, toxicity, mobility and source apportionment of metals in sediments from El Temsah Lake, Suez Canal. Chemosphere 222, 165-174. http://doi.org/10.1016/j.chemosphere.2019.01.009
  • 64. Ting, D.S., Appan, A., 1996. General characteristics and fractions of phosphorus in aquatic sediments of two tropical reservoirs. Water Sci. Technol. 34, 53-59. https://doi.org/10.1016/S0273-1223(96)00724-X
  • 65. Tiyapongpattana, W., Pongsakul, P., Shiowatana, J., Nacapricha, D., 2004. Sequential extraction of phosphorus in soil and sediment using a continuous-flow system. Talanta 62, 765-771. https://doi.org/10.1016/j.talanta.2003.09.018
  • 66. US EPA (2002). National Recommended Water Quality Criteria: 2002. Office of Water, EPA-822-R-02047, U.S. Environmental Protection Agency, Washington DC. http://www.epa.gov/waterscience/standards/wqcriteria.html
  • 67. Wang, S., Jin, X., Bu, Q., Liao, H., Wu, F., 2010. Evaluation of phosphorus bioavailability in sediments of the shallow lakes in the middle and lower reaches of the Yangtze River region, China. Environ. Earth Sci. 60, 1491-1498. https://doi.org/10.1007/S12665-009-0284-1
  • 68. Wang, L., Liang, T., 2015. Distribution Characteristics of Phosphorus in the Sediments and Overlying Water of Poyang Lake. PLoS ONE 10 (5), e0125859. https://doi.org/10.1371/journal.pone.0125859
  • 69. Zhou, Q., Gibson, C.E., Zhu, Y., 2001. Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK. Chemosphere 42, 221-225. https://doi.org/10.1016/s0045-6535(00)00129-6
  • 70. Zhu, M., Zhu, G., Li, W., Zhang, Y., Zhao, L., Gu, Z., 2013. Estimation of the algal-available phosphorus pool in sediments of a large, shallow eutrophic lake (Taihu, China) using profiled SMT fractional analysis. Environ. Pollut. 173, 21. https://doi.org/10.1016/j.envpol.2012.10.016
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc57f86b-d38a-4444-9630-b1438f4a9c21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.