PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Utilization of fuel cell energy source for distribution power generation: theory, modeling and review of research work

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wykorzystanie ogniw paliwowych w rozproszonych systemach wytwarzania energii elektrycznej – teoria, modelowanie i przegląd prac badawczych
Języki publikacji
EN
Abstrakty
EN
The energy crisis is one of the most critical phenomena happening in today’s world. The depletion of fossil fuels, the rise in oil prices, and the increase in power demand are the main causes of this problem. Concern over environmental conditions and human health make renewable energy one of the most viable alternative solutions to this crisis. Among various types of renewable energy, fuel cell technology shows a great potential in the electrical energy sector for several reasons, such as high efficiency, clean operation, and immunity to the adverse effects of weather conditions. Recent works prove that fuel cell technology is expected to be a better choice for distributed generation purposes. Distributed generation, which is installed near load centers, can moderate the stress of high electricity demand in the mainstream utility grid. This paper presents an overview of fuel cell technology, with emphasis on fuel cell types, characteristics, and applications. The differences among the various fuel cell types and the dynamic models of each type required for simulation are also discussed. Focus is given to the application of fuel cells in a distributed generation system, the requirements of a fuel cell-based generating system, and issues in distributed generation integration. The present study also discusses the power conditioning unit, which is an important component in the fuel cell-based generating system, as well as its control strategy. Discussion is likewise made on the use of suitable energy storage units for the fuel cell distributed generation system, with regard to battery types and storage control. By adding energy storage units to the fuel cell system, the capabilities of the existing generation system can improve system stability performance.
PL
W artykule zaprezentowano przegląd technologii wytwarzania energii z wykorzystaniem ogniw paliwowych koncentrując się na analizie różnych typów i ich zastosowań. Szczególną uwagę zwrócono na zastosowanie ogniw paliwowych w rozproszonych systemach wytwarzania energii. Analizowano też układ kondycjonowania energii oraz jego sterowanie.
Rocznik
Strony
189--200
Opis fizyczny
Bibliogr. 82 poz., schem., tab.
Twórcy
autor
  • Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
autor
  • Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
Bibliografia
  • [1] Guerrero J.M., Blaabjerg F., Zhelev T., Hemmes K., Monmasson E., Jemei S., Comech M. P., Granadino R., Frau J. I, Distributed generation: toward a new energy paradigm, Industrial Electronics Magazine IEEE, 4(2010), No.1, 52-64
  • [2] Nehrir M.H., Wang C., Shaw S.R., Fuel cells: promising devices for distributed generation, IEEE Power and Energy Magazine, 4(2006), No. 1, 47-53
  • [3] Carlson E., Zogg R., Sriramulu S., Roth K., Brodrick J., Emerging technologies: using phosphoric-acid fuel cells, ASHRAE Journal, 1(2007),No.1, 50-51
  • [4] Kristina H., On direct hydrogen fuel cell vehicles-modelling and demonstration, Doctoral Thesis, Department of Chemical Engineering and Technology, KTH- Royal Institute of Technology, Stockholm, Sweden, 2005.
  • [5] El-Sharkh M.Y., Rahman A., Alam M. S., Byrne P. C., Sakla A.A., Thomas T., A dynamic model for a stand-alone PEM fuel cell power plant for residential applications, Journal of Power Sources, 138(2004), No.1-2, 199-204
  • [6] Pathapati P.R., Xue X., Tang J., A new dynamic model for predicting transient phenomena in a PEM fuel cell system, Renewable Energy, 30(2005), No.1, 1-22
  • [7] Uzunoglu M., Alam M.S., Dynamic modeling, design, and simulation of a combined PEM fuel cell and ultracapacitor system for stand-alone residential applications, Energy Conversion, IEEE Transactions, 21(2006), No.3, 767-775
  • [8] Bibin H., Peng L., Dan W., Fei D., Chengshan W., Modeling and analysis of PEMFC in distributed generation system in sustainable power generation and supply, SUPERGEN '09. International Conference, 1(2009),No.1, 1-5
  • [9] Jia J., Yang S., Wang Y., Cham Y. T., Matlab/Simulink basedstudy on PEM fuel cell and nonlinear control, IEEE International Conference, 1(2009), No.1, 1657-1662
  • [10] Younis M. A. A., Rahim N.A., Mekhilef S., Dynamic and control of fuel cell system, Industrial electronics and applications, ICIEA 2008, IEEE Conference, 1(2008), No.1, 2063-2067
  • [11] Georgakis D., Papathanassiou S., Manias S., Modeling and control of a small scale grid-connected PEM fuel cell system, Power Electronics Specialists Conference, PESC '05. IEEE 36th., 1(2005), No.1, 1614-1620
  • [12] Tesfahunegn S.G., Vie P.J.S., Undeland T.M., A combined steady state and dynamic model of a proton exchange membrane fuel cell for use in DG system simulation, Power Electronics Conference (IPEC), 2010 International, 1(2010), No.1, 2457-2464
  • [13] Vielstich W., Lamm A., Gasteiger H.A., Handbook of fuel cells: fundamentals, technology, applications, Wiley, 2003.
  • [14] Nehrir M. H., Wang C., Modeling and control of fuel cellsdistributed eneration applications, New Jersey, Wiley, 2009.
  • [15] W H., Dynamic model for molten carbonate fuel-cell powergeneration system, Energy Conversion and Management, 39(1998), No.1, 775-783
  • [16] Lukas M.D., Lee K.Y., Ghezel-Ayagh H., Development of a stack simulation model for control study on direct reforming molten carbonate fuel cell power plan, Energy Conversion, IEEE Transactions, 14(1999), No.4, 1651-1657
  • [17] Lukas M.D., Lee K.Y., Ghezel-Ayagh H., An explicit dynamic model for direct reforming carbonate fuel cell stack, Energy Conversion, IEEE Transactions, 16(2001), No.3, 289-295
  • [18] Lukas M.D., Lee K.Y., Ghezel-Ayagh H., Reduced-order dynamic model of carbonate fuel cell system for distributed generation control, Power Engineering Society Summer Meeting, IEEE, 4(2000), No.1, 1965-1969
  • [19] Leto L., Dispenza C., Moreno A., Calabrò A., Simulation model of a molten carbonate fuel cell–microturbine hybrid system, Applied Thermal Engineering, 31(2011), No.6-7, 1263-1271
  • [20] Zogg R., Sriramulu S., Carlson E., Roth K., Brodrick J., Emerging technologies: using solid-oxide fuel cells for distributed generation, ASHRAE J.l, 1(2006), No. 1, 116-118
  • [21] Hall D.J., Colclaser R.G., Transient modeling and simulation of a tubular solid oxide fuel cell, Energy Conversion, IEEE Transactions, 14(1999), No.3, 749-753
  • [22] Sedghisigarchi K., Feliachi A., Dynamic and transient analysis of power distribution systems with fuel Cells-part I: fuel-cell dynamic model, IEEE Transactions on Energy Conversion, 19(2004), No.2, 423-428
  • [23] Sedghisigarchi K., Feliachi A, Dynamic and transient analysis of power distribution systems with fuel Cells-part II: control and stability enhancement, IEEE Transactions on Energy Conversion, 19(2004), No.2, 429-434
  • [24] Li Y.H., Rajakaruna S., Choi S.S., Control of a solid oxide fuel cell power plant in a grid-connected system, Energy Conversion, IEEE Transactions, 22(2007), No.2, 405-413
  • [25] Li Y.H., Choi S.S., Rajakaruna S., An analysis of the control and operation of a solid oxide fuel-cell power plant in an isolated system, Energy Conversion, IEEE Transactions, 20(2005), No.2, 381-387
  • [26] Padullés J., Ault G.W., McDonald J.R., An integrated SOFC plant dynamic model for power systems simulation, Journal of Power Sources, 86(2000), No.1-2, 495-500
  • [27] Wang C., Nehrir M.H., A physically-based dynamic model for solid oxide fuel cells, IEEE Trans. Energy Conversion., 22(2007), No.4, 887-897
  • [28] Liu Y.H, Wu Z.Q., Brandon N.P., Application of SOFCs to electric power system, Power and Energy Engineering Conference (APPEEC), Asia-Pacific, 1(2011), No.1, 1-4
  • [29] Hatziadoniu C.J., Lobo A.A., Pourboghrat F., Daneshdoost M., A simplified dynamic model of grid-connected fuel-cell generators, Power Delivery, IEEE Transactions, 17(2002), No.2, 467-473
  • [30] Fleming E.M., Hiskens I.A., Dynamics of micro grid supplied by solid oxide fuel cells, Bulk Power Systems Dynamics and Control VII, 1(2007), No.1, 1-10
  • [31] Francisco J., Manuel V., Manuel G., Identification of hammerstein model for solid oxide fuel cells, Electrical and Computer Engineering, CCECE '06. Canadian Conference, 1(2006), No.1, 442 - 445, 2006.
  • [32] Yutong Q., Biao H., Jingli L., Nonlinear state space modeling and simulation of a SOFC fuel cell, American Control Conference, 1,(2006), No.1, 2534-2538
  • [33] Andújar J.M., Segura F., Fuel cells: history and updating. A walk along two centuries, Renewable and Sustainable Energy Reviews, 13(2009), No.9, 2309-2322
  • [34] Choudhury S.R., Deshmukh M.B., Rengaswamy R., A twodimensional steady-state model for phosphoric acid fuel cells (PAFC), J. Power Sources, 112(2002), No.1, 137–152
  • [35] Davat B., et al., Fuel cell-based hybrid systems, Advanced Electromechanical Motion Systems & Electric Drives Joint Symposium, ELECTROMOTION 2009. 8th International Symposium, 1(2009), No.1, 1-11
  • [36] Fadali H., Fuel cell distributed generation: power conditioning, control and energy management, Master thesis, University of Waterloo, Ontario, Canada, 2008.
  • [37] Liu F., Liu J., Zhou L., A novel control strategy for hybrid energy storage system to relieve battery stress, Power Electronics for Distributed Generation Systems (PEDG), 2010 2nd IEEE International Symposium, 1(2010), No.1, 929-934
  • [38] Garcia F.S., Ferreira A.A., Pomilio J.A., Control strategy for battery-ultracapacitor hybrid energy storage system, Applied Power Electronics Conference and Exposition, APEC 2009. Twenty-Fourth Annual IEEE, 1(2009), No.1, 826-832
  • [39] Gao L., Dougal R.A., Liu S., Active power sharing in hybrid battery/capacitor power sources, Applied Power Electronics Conference and Exposition, APEC '03. Eighteenth Annual IEEE, 1(2003), No.1, 497-503
  • [40] Dai H., Chang X., A study on lead acid battery and ultracapacitor hybrid energy storage system for hybrid city bus, Optoelectronics and Image Processing (ICOIP), International Conference, 1(2010), No.1, 154-159
  • [41] Azib T., Talj R., Bethoux O., Marchand C.T., Sliding mode control and simulation of a hybrid fuel-cell ultracapacitor power system, Industrial Electronics (ISIE), IEEE International Symposium, 1(2010), No.1, 3425–3430
  • [42] Hajizadeh A., Golkar M.A., Fuzzy neural control of a hybrid fuel cell/battery distributed power generation system, IET Renewable Power Generation, 3(2009), No.4, 402–414
  • [43] Hajizadeh A., Golkar M.A., Control of hybrid fuel cell/energy storage distributed generation system against voltage sag, International Journal of Electric Power and Energy Systems, 32(2010), No.1, 488-497
  • [44] Jiang Z., Gao L., Blackwelder M.J., Dougal R.A., Design and experimental tests of control strategies for active hybrid fuel cell/battery power sources, J. Power Sources, 130(2004), No.1- 2, 163-171
  • [45] Thounthong P., Raël S., and Davat B., Test of a PEM fuel cell with low voltage static converter, J. Power Sources, 153(2006), No.1, 145-150
  • [46] Garcia-Arregui M., Turpin C., Astier S., Direct connection between a fuel cell and ultracapacitors, Clean Electrical Power, 2007. ICCEP '07. International Conf., 1(2007), No.1, 474-479
  • [47] Divya K.C, Østergaard J., Battery energy storage technology for power systems - an overview, Electric Power Systems Research, 79(2009), No.4, 511-520
  • [48] Coppez G., Chowdhury S., Chowdhury S.P., Review of battery storage optimisation in distributed generation, Power Electronics, Drives and Energy Systems & 2010 Power India, 2010 Joint International Conference, 1(2010), No.1, 1-6
  • [49] Garnier J., De Bernardinis A., Péra M.C., Hissel D., Candusso D., Kauffmann J.M., Coquery G., Study of a PEFC power generator modular architecture based on a multi-stack association, J. of Power Sources, 156(2006), No.1, 108-113
  • [50] Ozpineci B., Tolbert L.M., Zhong D., Multiple input converters for fuel cells, Industry Applications Conference, 39th IAS Annual Meeting, Conference Record of the 2004 IEEE, 2(2004), No.1, 791–797
  • [51] Ozpineci B., et al., Integrating multiple solid oxide fuel cell modules, Industrial Electronics Society, IECON '03. The 29th Annual Conference of the IEEE, 2(2003), No.1, 1568-1573
  • [52] Candusso D., De Bernardinis A., Péra M.C., Harel F., François X., Hissel D., Coquery G., Kauffmann J.M., Fuel cell operation under degraded working modes and study of diode by-pass circuit dedicated to multi-stack association, Energy Conversion and Management, 49(2008), No.4, 880-895
  • [53] Paska J., Biczel P., Klos M., Hybrid power systems – an effective way of utilising primary energy sources, Journal of Renewable Energy, 34(2009), No.11, 2414–2421
  • [54] Rajashekara K., Hybrid fuel cell strategies for clean power generation, Industry Applications Conference, 39th IAS Annual Meeting, Conference Record of the 2004 IEEE, 41(2004), No.3, 682–689
  • [55] François B., Hissel D., Iqbal M.T., Dynamic modelling of a fuel cell and wind turbine DC-linked power system, Electrimacs Conference 2005, 1(2005), No.1, 1-6
  • [56] Zhu Y., Tomsovic K., Development of models for analyzing the load-following performance of micro-turbines and fuel cells, Electric Power Systems Research, 62(2001), No.1, 1-11
  • [57] Ghasemi N., Abedi M., Rastegar H., Gharepetian G., Hybrid distributed generation units PEM fuel cell and microturbine in industrial technology, ICIT 2008, IEEE International Conference, 1(2008), No.1, 1-6
  • [58] Soliman M., Ahmed M.M.R., Safiuddin M., Modeling of fuel cell/microturbine generation scheme with battery storage, Electric Power and Energy Conference (EPEC), IEEE, 1(2010), No.1, 1-6
  • [59] Azmy A.M., Erlich I., Dynamic simulation of fuel cells and micro-turbines integrated with a multi-machine network, The 2003 IEEE Bologna Power Tech Conf., 2(2003), No.1, 1-6
  • [60] Zhou T., Lu D., Fakham H., François B., Power flow control in different time scales for a wind/hydrogen/supercapacitors based active hybrid power system, Proc. 13th International Power Electronics and Motion Control Conf., EPE-PEMC 2008, Poznan, Poland, 1(2008), No.1, 2205-2210
  • [61] Ren J., Roscoe A.J., Gamble S., Burt G., Modelling a reversible solid oxide fuel cell to be used as a storage device within AC power networks, Power Electronics, Machines and Drives (PEMD 2010), 5th IET International Conference, 2(2010), No.CP563, 697-702
  • [62] Zhenhua J., Rahimi-Eichi H., Design, modeling and simulation of a green building energy system, Power & Energy Society General Meeting, PES '09. IEEE, 1(2009), No.1, 1-7
  • [63] Thomas J., Johan B., Suitability of fuel cell technology for electricity utility standby power applications, Telecommunications Energy Conference, INTELEC '06. 28th Annual International, 1(2006), No.1, 1-7
  • [64] Choi W., Enjeti P., Howze J.W., Fuel cell powered UPS systems: design considerations, Power Electronics Specialist Conference, PESC '03. 2003 IEEE 34th Annual, 1(2003), No.1, 385-390
  • [65] O’Hayre R., Suk-Won C., Whitney C., Prinz F.B., Fuel Cell Fundamental, Wiley, 2008
  • [66] Jung J.W., Modeling And Control Of Fuel Cell Based Distributed Generation Systems, PhD thesis, The Ohio State University, 2005
  • [67] Xinhong H., Zhihao Z., Jin J., Fuel cell technology for distributed generation: an overview, Industrial Electronics, IEEE International Symposium, 2(2006), No.1, 1613-1618
  • [68] Blaabjerg F., Chen Z., Kjaer S.B., Power electronics as efficient interface in dispersed power generation systems, IEEE Trans Power Electronics, 19(2004), No.5, 1184–1194
  • [69] Kirubakaran A., Jain S., Nema R.K., A review on fuel cell technologies and power electronic interface, Renewable and Sustainable Energy Reviews, 13(2009), No.9, 2430-2440
  • [70] Thottuvelil V.J., Verghese G.E., Analysis and control design of paralleled DC/DC converters with current sharing, IEEE Transactions on Power Electronics, 13(1998), No.4, 635-644
  • [71] Panov Y., Jovanoiv M.M., Stability and dynamic performance of current-sharing control for paralleled voltage regulator modules, IEEE Trans. on Power Electronics, 17(2002), No.1, 172-179
  • [72] Ponjavic M., Djuric R., Current sharing for synchronized DC/DC operating in discontinuous condition mode, IEEE Proceedings on Electric Power Applications, 152(2005), No.1, 119-127
  • [73] Mahmud M.A., Hossain M.J., Pota H.R., Analysis of voltage rise effect on distribution network with distributed generation, Proceedings of the 18th IFAC World Congress, 1(2011), No.1, 14796-14801
  • [74] Hajizadeh A., Golkar M.A., Intelligent robust control of hybrid distributed generation system under voltage sag, Expert Systems with Applications, 37(2010), No.12, 7627-7638
  • [75] Chandorkar M.C., Divan D.M., Adapa R., Control of parallel connected inverters in standalone AC supply systems, IEEE Trans. Ind. Appl., 29(1993), No.1, 136–143
  • [76] Zhang Z., Jiang J., Huang X., Wu B., Dynamic characteristics of a micro-grid involving a PEM fuel cell power module, IEEE International Symposium on Industrial Electronics (ISIE06), 3(2006), No.1, 2030-2034
  • [77] Katiraei F., Iravani M.R., Power management strategies for a microgrid with multiple distributed generation units, IEEE Trans. Power Syst., 21(2006), No.4, 1821–1831
  • [78]Mohamed Y.A-R.I., El-Saadany E.F., Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids, IEEE Trans. Power Electron., 23(2008), No.6, 2806–2816
  • [79] Tanrioven M., Alam M.S., Modeling, control, and power quality evaluation of a PEM fuel cell-based power supply system for residential use, IEEE Transactions on Industry Applications, 42(2006), No.6, 1582-1589
  • [80] Nehrir M.H., Wang C., Gao H., Control of PEM fuel cell distributed generation systems, IEEE Transactions on Energy Conversion, 21(2006), No.2, 586- 595
  • [81] Ghareeb W.T., Bendary F.M., Saied E.M., Hegazy Y.G., Investigating the performance of a fuel cell based distributed generation system, Energy Conference and Exhibition (EnergyCon), IEEE International, 1(2010), No.1, 462-467
  • [82] Jurado F., Ortega M., Carpio J., Power quality enhancement in fuel cells using genetic algorithms and ANFIS architecture, Industrial Electronics, IEEE International Symposium, 2(2006), No.1, 757–762
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc55f38b-4f51-46a4-85b8-61aeb98e211a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.