PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Static bending of isotropic circular cylindrical shells based on the higher order shear deformation theory of Reddy and Liu

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a displacement based shear deformation theory formulated on the cubic in-plane displacement field equation of Reddy and Liu is presented for the static bending analysis of isotropic circular cylindrical shells. The adopted displacement field accounts for a quadratic (parabolic) distribution of the transverse shear through the shell thickness as well as satisfies the need for a stress free upper and lower boundary surfaces of the shell. The equations of static equilibrium are obtained on application of the principle of virtual work. Numerical results of the bending analysis for the displacements and stresses are presented for the simply supported shell. A comparison made to those of the Kirchhoff-Love theory for varying shell length to mean – radius of curvature ratios, shows good agreement for thin shells irrespective of the shell length to radius of curvature ratio [...]. The transverse sharing effect is found to be noticeable in the deformation of thick shells, however, this effect diminishes with a continuous increase in [...] ratios.
Rocznik
Strony
141--162
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • Department of Civil Engineering University of Nigeria, Nsukka, Enugu state, NIGERIA
autor
  • Department of Civil Engineering University of Nigeria, Nsukka, Enugu state, NIGERIA
  • Department of Civil Engineering University of Nigeria, Nsukka, Enugu state, NIGERIA
  • Department of Civil Engineering Alex Ekwueme Federal University Ndufu Alike P.M.B. 1010, Abakaliki, NIGERIA
Bibliografia
  • [1] Novozhilov V.V. (1959): The Theory of Thin Elastic Shells.– Groningen: P. Noordhoff Ltd.
  • [2] Mindlin R.D. (1951): Influence of rotary inertia and shear on flexural motion of isotropic, elastic plates.– Journal of Applied Mechanics, vol.18, pp.31-38.
  • [3] Selim B.A., Zhang L.W. and Liew K.M. (2016): Vibration analysis of CNT reinforced functionally graded composite plates in a thermal environment based on Reddy’s higher-order shear deformation theory.– Composite Structures, vol.156, pp.276-290.
  • [4] Amabili M. and Reddy J.N. (2020): The nonlinear, third-order thickness and shear deformation theory for statics and dynamics of laminated composite shells.– Composite Structures, vol.244, pp.112265.
  • [5] Reddy J.N. (1984): Exact Solutions of Moderately Thick Laminated Shells. –Journal of Engineering Mechanics, vol.110, No.5, pp.794-809.
  • [6] Soldatos K.P. (1986): On thickness shear deformation theories for the dynamic analysis of non-circular cylindrical shells.– International Journal of Solids Structures, vol.22, No.6, pp.625-641.
  • [7] Reddy J.N. and Liu C.F. (1985): A higher-order shear deformation theory of laminated elastic shells.– International Journal of Engineering Science, vol.23, No.3, pp.319-330.
  • [8] Di S. and Rothert H. (1995): A Solution of laminated cylindrical shells using an unconstrained third-order theory.– Computers and Structures, vol.69, No.3, pp.291-303.
  • [9] Cho M., Kim K.O. and Kim M.H. (1996): Efficient higher-order shell theory for laminated composites.– Composite Structures, vol.34, No.2, pp.197-212.
  • [10] Vuong P.M. and Duc N.D. (2020): Nonlinear buckling and post-buckling behavior of shear deformable sandwich toroidal shell segments with functionally graded core subjected to axial compression and thermal loads.– Aerospace Science and Technology, vol.106, pp.106084.
  • [11] Ventsel E. and Krauthammer T. (2001): Thin Plates and Shells:Theory, Analysis and Applications.– New York: Marcel Dekker.
  • [12] Viola E., Tornabene F. and Fantuzzi N. (2013): General higher-order shear deformation theories for the free vibration analysis of completely doubly-curved laminated shells and panels.– Composite Structures, vol.95, pp.639-666.
  • [13] Soedel W. (2004): Vibrations of Shells and Plates.– New York: Marcel Dekker, Inc.
  • [14] Ibeabuchi V.T., Ibearugbulem O.M., Ezeah C and Ugwu O.O. (2020): Elastic buckling analysis of uniaxially compressed CCCC stiffened isotropic plates.– International Journal of Applied Mechanics and Engineering, vol.25, No.4, pp.84-95.
  • [15] Ibearugbulem O.M, Ibeabuchi V.T. and Njoku K.O. (2014): Buckling analysis of SSSS stiffened rectangular isotropic plates using work principle approach. – International Journal of Innovative Research & Development, vol.3, No.11, pp.169-176.
  • [16] Ugural, A.C. (2010): Stresses in Beams, Plates, and Shells, Third Edit.– New York: CRC Press - Taylor & Francis Group.
  • [17] Amabili M. and Reddy J.N. (2010): A new non-linear higher-order shear deformation theory for large-amplitude vibrations of laminated doubly curved shells.– International Journal Non Linear Mechanics, vol.45, No.4, pp.409-418.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc51c019-746c-47d7-8a4c-a74c4fdcf64e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.