PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of Impurities of Polypropylene and Silicone Inclusions on the Properties of Polyamide 6.6 Regranulates Derived from the Re-Processing of Airbags

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The following article presents the results of selected properties of regranulates of polyamide 6.6, regranules of polyamide contaminated with polypropylene and regranules of polyamide contaminated with silicone. The tested materials came from the reprocessing of polyamides 6.6 originally derived from production of airbags from renowned world producers (material for the research came from production waste). The results of examination were referred to regranulates of uncontaminated polyamide but also obtained from waste from the production of these airbags. The influence of impurities on properties of regranulates such as their density and melt flow index was assessed. The tests allowed to show a significant impact of impurities on the density but above all on the mass and volume flow rate index which ranged from 47 to 116 g/10 min. In the case of standardized test specimens selected thermal and mechanical properties were analyzed. Differential scanning calorimetry was used to assess the impact of impurities on the thermal properties of polyamides, allowing primarily identification of materials and impurities (especially polypropylene) as well as characteristic temperatures and the enthalpy of melting of the materials being analyzed. The mechanical properties were assessed using a DMA device. DMA research allowed to determine changes in mechanical properties in a wide temperature range of tested materials. It allowed to obtain full characteristics of changes in material stiffness under the influence of two factors, i.e. temperature and content of impurities, like polypropylene or silicone.
Słowa kluczowe
Twórcy
  • Częstochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, Częstochowa 42-200, 69 J.H. Dąbrowskiego Str., Poland
Bibliografia
  • [1] M. Alwaeli, A glance at the world: Recycling of packaging waste in Poland, Waste Management 29 (12), 3054-3055, (2009). DOI: https://doi.org/10.1016/j.wasman.2009.09.004
  • [2] A. Pudełko, K. Malińska, P. Postawa, T. Stachowiak, P. Weisser, Wybrane właściwości biokompozytów na osnowie polimerów biodegradowalnych z dodatkiem biowęgla z osadów ściekowych, Prace Instytutu Ceramiki i Materiałów Budowlanych 9 (26), 115-127, (2016).
  • [3] T. Stachowiak, P. Postawa, Selected Mechanical and Thermal Properties of Hemp Fiber Molded Parts after Mechanical Recycling, Przetwórstwo Tworzyw 23 (179), 434-441, (2017).
  • [4] S. Norwiński, P. Postawa, R. Sachajko, P. Palutkiewicz, T. Stachowiak, The Investigations of Thermomechanical Properties of Polypropylene Composites, Advances in Polymer Technology Article ID 1267692, 1-11, (2019). DOI: https://doi.org/10.1155/2019/1267692
  • [5] T. Stachowiak, P. Postawa, Optymalizacja kształtu wypraski poprzez analizę rozkładu temperatury na powierzchni wypraski z wykorzystaniem pomiarów termowizyjnych, Przetwórstwo Tworzyw 5 (173), 421-427, (2016).
  • [6] T. Stachowiak, Properties of Recycled Natural Fiber Reinforced Composites Materials, Acta Physica Polonica A 135 (2), 103-106, (2019). DOI: https://doi.org/10.12693/APhysPolA.135.103
  • [7] L. Quiles-Carrillo, S. Duart, N. Montanes, S. Torres-Giner, R. Balart, Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil, Materials & Design 140, 54-63, (2018). DOI: https://doi.org/10.1016/j.matdes.2017.11.031
  • [8] K. Łukasik, T. Stachowiak, Intelligent Management in the Age of Industry 4.0 - an Example of a Polymer Processing Company, Management and Production Engineering Review 11 (2), 38-49, (2020). DOI: https://doi.org/10.24425/mper.2020.133727
  • [9] P. Górak, P. Postawa, L. Tusilewicz, Lightweight Composite Aggregates as a Dual End-of-Waste Product from PET and Anthropogenic Materials, Journal of Cleaner Production 256, 1-13, (2020). DOI: https://doi.org/10.1016/j.jclepro.2020.120366
  • [10] A. Pudełko, K. Malińska, P. Postawa, T. Stachowiak, P. Weisser, Mechanical, Thermal and Morphological Properties of Biochar Added Biocomposites, Book of Abstracts. The Biodegradable Waste in Circular Economy 201-204, (2016).
  • [11] A. Schmid, P. Naquin, R. Gourdon, Incidence of the level of deconstruction on material reuse, recycling and recovery from end-of life vehicles: an industrial-scale experimental study, Resources, Conservation and Recycling 72, 118-126, (2013). DOI: https://doi.org/10.1016/j.resconrec.2013.01.007
  • [12] M. Pietroluongo, E. Padovano, A. Frache, C. Badini, Mechanical recycling of an end-of-life automotive composite component, Sustainable Materials and Technologies 23, 1-7, (2020). DOI: https://doi.org/10.1016/j.susmat.2019.e00143
  • [13] R.J. Tapper, M.L. Longana, A. Norton, K.D. Potter, I. Hamerton, An evaluation of life cycle assessment and its application to the closed-loop recycling of carbon fibre reinforced polymers, Composites Part B 184, 1-10, (2020). DOI: https://doi.org/10.1016/j.compositesb.2019.107665
  • [14] M.R. Mansor, S.M. Sapuan, E.S. Zainudin, A.A. Nuraini, A. Hambali, Hybrid natural and glass fibers reinforced polymer composites material selection using Analytical Hierarchy Process for automotive brake lever design, Materials and Design 51, 484-492, (2013). DOI: https://doi.org/10.1016/j.matdes.2013.04.072
  • [15] K. Hamad, M. Kaseem, F. Deri, Recycling of waste from polymer materials: An overview of the recent works, Polymer Degradation and Stability 98, 2801-2812, (2013). DOI: https://doi.org/10.1016/j.polymdegradstab.2013.09.025
  • [16] Y. Zhang, Y. Li, H. Ma, T. Yu, Tensile and interfacial properties of unidirectional flax/glass fiber reinforced hybrid composites, Composites Science and Technology 88, 172-177, (2013). DOI: https://doi.org/10.1016/j.compscitech.2013.08.037
  • [17] S.C. Ozmen, G. Ozkoc, E. Serhatli, Thermal, mechanical and physical properties of chain extended recycled polyamide 6 via reactive extrusion: Effect of chain extender types, Polymer Degradation and Stability 162, 76-84, (2019). DOI: https://doi.org/10.1016/j.polymdegradstab.2019.01.026
  • [18] J. Dobransky, L. Behalek, P. Barona, M. Kocisko, L. Dulebova, The influence of the use of technological waste on the mechanical behavior of fibrous polymer composite, Composites Part B 166, 162-168, (2019). DOI: https://doi.org/10.1016/j.compositesb.2018.12.003
  • [19] R.J. Tapper, M.L. Longana, I. Hamerton, K.D. Potter, Closed-loop recycling process for discontinuous carbon fibre polyamide 6 composites, Composites Part B 179, 1-12, (2019). DOI: https://doi.org/10.1016/j.compositesb.2019.107418
  • [20] C.T. Ferreira, C.A.B. Perez, D. Hirayama, C. Saron, Recycling of polyamide (PA) from scrap tires as composites and blends, Journal of Environmental Chemical Engineering 1, (4), 762-767, (2013). DOI: https://doi.org/10.1016/j.jece.2013.07.016
  • [21] R. Singha, R. Kumara, N. Ranjana, R. Pennab, F. Fraternali, On the recyclability of polyamide for sustainable composite structures in civil engineering, Composite Structures 184, 704-713, (2018). DOI: https://doi.org/10.1016/j.compstruct.2017.10.036
  • [22] M.M. Hassan, N.A. Badway, A.M. Gamal, M.Y. Elnaggar, E.A. Hegazy, Studies on mechanical, thermal and morphological properties of irradiated recycled polyamide and waste rubber powder blends, Nuclear Instruments and Methods in Physics Research B 268, 1427-1434, (2010). DOI: https://doi.org/10.1016/j.nimb.2010.01.021
  • [23] H. Ghasemi, A. Mirzadeh, P.J. Bates, M.R. Kamal, Characterization of recycled polyamide 6: Effect of polypropylene and inorganic contaminants on mechanical properties, Polymer Testing 42, 69-78, (2015). DOI: https://doi.org/10.1016/j.polymertesting.2014.12.015
  • [24] T. Rydzkowski, G. Radomski, Mixing ratios obtained using screwdisk-type and screw extruders; selected properties of regranulate and the original material mixtures, Plastic, Rubber and Composites: Macromolecular Engineering 37 (8), 376-380, (2008). DOI: https://doi.org/10.1179/174328908X356473
  • [25] T. Rydzkowski, Właściwości mieszanin recyklatów otrzymywanych w procesie wytłaczania ślimakowo-tarczowego, Polimery 56 (2), 135-139, (2011).
  • [26] PN-EN ISO 294-1 Plastics - Injection moulding of test specimens of thermoplastic materials - Part 1: General principles, (2017).
  • [27] PN-EN ISO 1183-1 Plastics - Methods for determining the density of non-cellular plastics - Part 1: Immersion method, liquid pycnometer method and titration method, (2016).
  • [28] PN-EN ISO 1133 Plastics - Determination of the melt mass-flow rate (MFR) and melt volume-flow rate (MVR) of thermoplastics - Part 1: Standard method, (2016).
  • [29] PN-EN ISO 11357-1 Plastics - Differential scanning calorimetry (DSC) - Part 1: General principles, (2016).
  • [30] PN-EN ISO 6721-1. Plastics - Determination of dynamic mechanical properties - Part 1: General principles, (2016).
  • [31] K. Łukasik, T. Stachowiak, Enterprise Resource Planning / Manufacturing Execution System - Industry 4.0 Management Systems on the Example of the Polymer Processing Industry, Proceedings of the 35th International Business Information Management Association (IBIMA), 3266-3277 (2020).
  • [32] A. Patila, A. Patela, R. Purohit, An overview of Polymeric Materials for Automotive Applications, ScienceDirect, Materials Today, Proceedings 4 (2), 3807-3815 (2017). DOI: https://doi.org/10.1016/j.matpr.2017.02.278
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc4d8e9b-c3a3-4d87-8e94-cc46f483c1f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.