Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The impact resistance of concrete slabs was investigated through a comparative experimental analysis of Conventional Concrete (CC) and Steel Fiber Reinforced Concrete (SFRC), with a focus on dynamic performance using the Ratio of Crack Resistance (Rcr) as a core evaluative metric. The research aims to address the limitations of CC under high-strain-rate conditions and explore the effectiveness of steel fiber reinforcement in mitigating impact-induced damage. CC slabs exhibited brittle failure with a low Rcr of 0.09, characterized by rapid crack propagation and negligible energy dissipation. In contrast, SFRC slabs demonstrated a substantial improvement in impact resistance, achieving Rcr values between 0.75 and 1.35. This performance gain is directly linked to the inclusion of 1% steel fibers, which enhanced tensile capacity, bridged developing cracks, and delayed crack propagation, ultimately shifting the failure mode from brittle to ductile. Repeated impact testing further revealed that SFRC slabs maintained structural integrity even after perforation onset. The study establishes the significance of fiber content and distribution in optimizing impact performance and reducing the risk of punching shear failure. These findings position SFRC as a structurally resilient solution for applications subjected to dynamic loading, such as protective slabs, industrial floors, and critical transportation infrastructure.
Wydawca
Rocznik
Tom
Strony
30--43
Opis fizyczny
Bibliogr., 71 poz., fig., tab.
Twórcy
autor
- School of Civil Engineering, Vellore Institute of Technology, Chennai, India
autor
- School of Civil Engineering, Vellore Institute of Technology, Chennai, India
autor
- School of Civil Engineering, Vellore Institute of Technology, Chennai, India
autor
- School of Civil Engineering, Vellore Institute of Technology, Chennai, India
Bibliografia
- 1. Li Y., Shen J., Lin H., Li Y. Optimization design for alkali-activated slag-fly ash geopolymer concrete based on artificial intelligence considering compressive strength, cost, and carbon emission, J. Build. Eng. 2023; 75. https://doi.org/10.1016/j.jobe.2023.106929.
- 2. Zhang S., Li Z., Ghiassi B., Yin S., Ye G. Fracture properties and microstructure formation of hardened alkali-activated slag/fly ash pastes, Cement Concr. Res. 2021; 144. https://doi.org/10.1016/j.cemconres.2021.106447.
- 3. Shilar F.A., Ganachari S.V., Patil V.B., Nisar K.S. Evaluation of structural performances of metakaolin based geopolymer concrete, J. Mater. Res. Technol. 2022. https://doi.org/10.1016/j.jmrt.2022.08.020.
- 4. A. Bouaissi, Li L. yuan, M.M. Al Bakri Abdullah, Q.B. Bui, Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete, Construct. Build. Mater. 2019; 210: 198–209. https://doi.org/10.1016/j.conbuildmat.2019.03.202.
- 5. WBCSD. World Business Council for Sustainable Development and International Energy Agency Cement Technology Roadmap 2009: Carbon Emissions Reductions up to 2050, World Business Council for Sustainable Development IEA (International Energy Agency), 2009.
- 6. Eisa M.S., Basiouny M.E., Fahmy E.A. Drying shrinkage and thermal expansion of metakaolin-based geopolymer concrete pavement reinforced with biaxial geogrid, Case Stud. Constr. Mater. 2022; 17. https://doi.org/10.1016/j.cscm.2022.e01415.
- 7. Yu M., Lin H., Wang T., Shi F., Li D., Chi Y., et al. Experimental and numerical investigation on thermal properties of alkali-activated concrete at elevated temperatures, J. Build. Eng. 2023; 74. https://doi.org/10.1016/j.jobe.2023.106924.
- 8. Oesterlee C. Structural analysis of a composite bridge girder combining UHPFRC and reinforced concrete. High Performance Concrete, 2008; 1–8.
- 9. Murali G., Santhi A.S., Ganesh G.M. Impact resistance and strength reliability of fiber-reinforced concrete in bending under drop weight impact load, International Journal of Technology 2014; 5. https://doi.org/10.14716/ijtech.v5i2.403.
- 10. Murali G., Abid S.R., Abdelgader H.S., Amran Y.H.M., Shekarchi M., Wilde K. Repeated projectile impact tests on multi-layered fibrous cementitious composites, Int. J. Civ. Eng. 2021. https://doi.org/10.1007/s40999-020-00595-4.
- 11. Prasad N., Murali G. Exploring the impact performance of functionally-graded preplaced aggregate concrete incorporating steel and polypropylene fibres, J. Build. Eng. 2021; 35. https://doi.org/10.1016/j.jobe.2020.102077.
- 12. Prasad N., Murali G., Abid S.R., Vatin N., Fediuk R., Amran M. Effect of needle type, number of layers on FPAFC composite against low-velocity projectile impact, Buildings 2021; 11. https://doi.org/10.3390/buildings11120668.
- 13. Moghadam A.S., Omidinasab F., Dalvand A. Experimental investigation of (FRSC) cementitious composite functionally graded slabs under projectile and drop weight impacts, Construct. Build. Mater. 2020; 237: 117522. https://doi.org/10.1016/j.conbuildmat.2019.117522.
- 14. Quek S.T., Lin V.W.J., Maalej M. Development of functionally-graded cementitious panel against high-velocity small projectile impact, Int. J. Impact Eng. 2010; 37: 928–941. https://doi.org/10.1016/j.ijimpeng.2010.02.002.
- 15. Mastali M., Ghasemi Naghibdehi M., Naghipour M., Rabiee S.M. Experimental assessment of functionally graded reinforced concrete (FGRC) slabs under drop weight and projectile impacts, Construct. Build. Mater. 2015; 95: 296–311. https://doi.org/10.1016/j.conbuildmat.2015.07.153.
- 16. Li P.P., Sluijsmans M.J.C., Brouwers H.J.H., Yu Q.L. Functionally graded ultra-high performance cementitious composite with enhanced impact properties, Compos. B Eng. 2020; 183. https://doi.org/10.1016/j.compositesb.2019.107680.
- 17. Rhee H., Horstemeyer M.F., Hwang Y., Lim H., El Kadiri H., Trim W. A study on the structure and mechanical behavior of the Terrapene Carolina carapace: a pathway to design bio-inspired synthetic composites, Mater. Sci. Eng. C 2009; 29: 2333–2339. https://doi.org/10.1016/j.msec.2009.06.002.
- 18. Ong C.W.R., Zhang M.H., Du H., Pang S.D. Functionally layered cement composites against projectile impact, Int. J. Impact Eng. 2019; 133: 103338. https://doi.org/10.1016/j.ijimpeng.2019.103338.
- 19. Prasad N., Murali G. Research on flexure and impact performance of functionally-graded two-stage fibrous concrete beams of different sizes, Construct. Build. Mater. 2021; 288: 123138. https://doi.org/10.1016/j.conbuildmat.2021.123138.
- 20. Murali G., Abid S.R., Al-Lami K., Vatin N.I., Dixit S., Fediuk R. Pure and mixed-mode (I/III) fracture toughness of preplaced aggregate fibrous concrete and slurry infiltrated fibre concrete and hybrid combination comprising nano carbon tubes, Construct. Build. Mater. 2023; 362. https://doi.org/10.1016/j.conbuildmat.2022.129696.
- 21. Murali G., Abid S.R., Vatin N.I., Amran M., Fediuk R. Influence of height and weight of drop hammer on impact strength and fracture toughness of two-stage fibrous concrete comprising nano carbon tubes, Construct. Build. Mater. 2022; 349. https://doi.org/10.1016/j.conbuildmat.2022.128782.
- 22. Karthik S., Raja Mohan K.S., Murali G. Investigations on the response of novel layered geopolymer fibrous concrete to drop weight impact, Buildings 2022; 12. https://doi.org/10.3390/buildings12020100.
- 23. Murali G., Abid S.R., Amran M., Fediuk R., Vatin N., Karelina M. Combined effect of multi-walled carbon nanotubes, steel fibre and glass fibre mesh on novel two-stage expanded clay aggregate concrete against impact loading, Crystals 2021; 11. https://doi.org/10.3390/cryst11070720.
- 24. Murali G., Abid S.R., Karthikeyan K., Haridharan M.K., Amran M., Siva A. Low-velocity impact response of novel prepacked expanded clay aggregate fibrous concrete produced with carbon nano tube, glass fiber mesh and steel fiber, Construct. Build. Mater. 2021; 284. https://doi.org/10.1016/j.conbuildmat.2021.122749.
- 25. Elakhras A.A., Seleem M.H., Sallam H.E.M. Intrinsic fracture toughness of fiber reinforced and functionally graded concretes: an innovative approach, Eng. Fract. Mech. 2021; 258. https://doi.org/10.1016/j.engfracmech.2021.108098.
- 26. Lai J., Yang H., Wang H., Zheng X., Wang Q. Penetration experiments and simulation of three-layer functionally graded cementitious composite subjected to multiple projectile impacts, Construct. Build. Mater. 2019; 196: 499–511. https://doi.org/10.1016/j.conbuildmat.2018.11.154.
- 27. Zhang P., Su J., Guo J., Hu S. Influence of carbon nanotube on properties of concrete: a review, Construct. Build. Mater. 2023; 369. https://doi.org/10.1016/j.conbuildmat.2023.130388.
- 28. Lu D., Shi X., Zhong J. Nano-engineering the interfacial transition zone in cement composites with graphene oxide, Construct. Build. Mater. 2022; 356. https://doi.org/10.1016/j.conbuildmat.2022.129284.
- 29. Sanchez F., Sobolev K. Nanotechnology in concrete - a review, Construct. Build. Mater. 2010. https://doi.org/10.1016/j.conbuildmat.2010.03.014.
- 30. Han B., Yu X., Kwon E. A self-sensing carbon nanotube/cement composite for traffic monitoring, Nanotechnology 2009; 20. https://doi.org/10.1088/0957-4484/20/44/445501.
- 31. Li Y., Li H., Wang Z., Jin C. Effect and mechanism analysis of functionalized multi-walled carbon nanotubes (MWCNTs) on C-S-H gel, Cement Concr. Res. 2020; 128. https://doi.org/10.1016/j.cemconres.2019.105955.
- 32. Nam I.W., Park S.M., Lee H.K., Zheng L. Mechanical properties and piezoresistive sensing capabilities of FRP composites incorporating CNT fibers, Compos. Struct. 2017; 178: 1–8. https://doi.org/10.1016/j.compstruct.2017.07.008.
- 33. Korayem A.H., Tourani N., Zakertabrizi M., Sabziparvar A.M., Duan W.H. A review of dispersion of nanoparticles in cementitious matrices: nanoparticle geometry perspective, Construct. Build. Mater. 2017; 153: 346–357. https://doi.org/10.1016/j.conbuildmat.2017.06.164.
- 34. Bureau of Indian Standards (Bis). Code of Practice – Specification for Coarse and Fine Aggregate from Natural Sources for Concrete: New Delhi: BIS; 1970. Standard No IS 383: 2002., n.d.
- 35. Astm, C939-10. Standard Test Method for Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method), 2010; 4: 9–11. ASTM International, https://doi.org/10.1520/C0939-16A.
- 36. Luo J.L. Fabrication and Functional Properties of Multi-Walled Carbon Nanotube/cement Composites, 2009.
- 37. Parveen S., Rana S., Fangueiro R., Paiva M.C. Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique, Cement Concr. Res. 2015; 73: 215–227. https://doi.org/10.1016/j.cemconres.2015.03.006.
- 38. Nochaiya T., Chaipanich A. Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials, Appl. Surf. Sci. 2011; 257: 1941–1945. https://doi.org/10.1016/j.apsusc.2010.09.030.
- 39. Najjar M.F., Soliman A.M., Nehdi M.L. Critical overview of two-stage concrete: properties and applications, Construct. Build. Mater. 2014; 62: 47–58. https://doi.org/10.1016/j.conbuildmat.2014.03.021.
- 40. Irshidat M.R., Al-Shannaq A. Using textile reinforced mortar modified with carbon nano tubes to improve flexural performance of RC beams, Compos. Struct. 2018; 200: 127–134. https://doi.org/10.1016/j.compstruct.2018.05.088.
- 41. Vairagade V.S., Dhale S.A. Impact resistance of hybrid steel fiber reinforced concrete, Hybrid Advances 2023; 3: 100048. https://doi.org/10.1016/j.hybadv.2023.100048.
- 42. Murali G., Vinodha E. Experimental and analytical study of impact failure strength of steel hybrid fibre reinforced concrete subjected to freezing and thawing cycles, Arabian J. Sci. Eng. 2018; 43: 5487–5497. https://doi.org/10.1007/s13369-018-3202-6.
- 43. Mohammed B.S., Haruna S., Wahab M.M.A., Liew M.S., Haruna A. Mechanical and microstructural properties of high calcium fly ash one-part geopolymer cement made with granular activator, Heliyon 2019; 5. https://doi.org/10.1016/j.heliyon.2019.e02255.
- 44. Ikraiam F.A., El-latif A.A., Elazziz A.A., Ali J.M. Effect of steel fiber addition on mechanical properties and γ-ray attenuation for ordinary concrete used in El-Gabal El-Akhdar area in Libya for radiation shielding purposes, Arab J Nucl Sci Appl 2009; 42: 287–295.
- 45. Li J.J., Niu J.G., Wan C.J., Jin B., Yin Y.L. Investigation on mechanical properties and microstructure of high performance polypropylene fiber reinforced lightweight aggregate concrete, Construct. Build. Mater. 2016; 118: 27–35. https://doi.org/10.1016/j.conbuildmat.2016.04.116.
- 46. Han J., Liu Z., Zhang C. Experimental study on impact resistance of steel-fiber-reinforced two-grade aggregate concrete, Construct. Build. Mater. 2023; 373. https://doi.org/10.1016/j.conbuildmat.2023.130901.
- 47. Mohammed A.A., Karim S.H. Impact strength and mechanical properties of high strength concrete containing PET waste fiber, J. Build. Eng. 2023; 68. https://doi.org/10.1016/j.jobe.2023.106195.
- 48. Yusuf M.O., Megat Johari M.A., Ahmad Z.A., Maslehuddin M. Evolution of alkaline activated ground blast furnace slag-ultrafine palm oil fuel ash based concrete, Mater. Des. 2014; 55: 387–393. https://doi.org/10.1016/j.matdes.2013.09.047.
- 49. Ibrahim M., Megat Johari M.A., Rahman M.K., Maslehuddin M. Effect of alkaline activators and binder content on the properties of natural pozzolan-based alkali activated concrete, Construct. Build. Mater. 2017; 147: 648–660. https://doi.org/10.1016/j.conbuildmat.2017.04.163.
- 50. Fantilli A.P., Chiaia B., Gorino A. Fiber volume fraction and ductility index of concrete beams, Cement Concr. Compos. 2016; 65: 139–149. https://doi.org/10.1016/j.cemconcomp.2015.10.019.
- 51. Yahaghi J., Muda Z.C., Beddu S.B. Impact resistance of oil palm shells concrete reinforced with polypropylene fibre, Construct. Build. Mater. 2016; 123: 394–403. https://doi.org/10.1016/j.conbuildmat.2016.07.026.
- 52. Murali G., Ramprasad K. A feasibility of enhancing the impact strength of novel layered two stage fibrous concrete slabs, Eng. Struct. 2018; 175. https://doi.org/10.1016/j.engstruct.2018.08.034.
- 53. Silvestro L., Jean Paul Gleize P. Effect of carbon nanotubes on compressive, flexural and tensile strengths of Portland cement-based materials: a systematic literature review, Construct. Build. Mater. 2020; 264. https://doi.org/10.1016/j.conbuildmat.2020.120237.
- 54. Wang Z., Yan J., Lin Y., Fan F., Sun M. Experimental and analytical study on the double steel plates-UHPC sandwich slabs under low-velocity impact, Thin-Walled Struct. 2023; 184. https://doi.org/10.1016/j.tws.2023.110548.
- 55. Rithanyaa R., Murali G., Salaimanimagudam M.P., Fediuk R., Abdelgader H.S., Siva A. Impact response of novel layered two stage fibrous composite slabs with different support type, Structures 29 2021; 1–13. https://doi.org/10.1016/j.istruc.2020.11.004.
- 56. Chen C., Zhang X., Hao H. Investigation on the impact resistance of reinforced geopolymer concrete slab, J. Clean. Prod. 2023; 406. https://doi.org/10.1016/j.jclepro.2023.137144.
- 57. Yu R., Spiesz P., Brouwers H.J.H. Static properties and impact resistance of a green ultra-high performance hybrid fibre reinforced concrete (UHPHFRC): experiments and modeling, Construct. Build. Mater. 2014; 68: 158–171. https://doi.org/10.1016/j.conbuildmat.2014.06.033.
- 58. Asrani N.P., Murali G., Parthiban K., Surya K., Prakash A., Rathika K., et al. A feasibility of enhancing the impact resistance of hybrid fibrous geopolymer composites: experiments and modelling, Construct. Build. Mater. 2019; 203: 56–68. https://doi.org/10.1016/j.conbuildmat.2019.01.072.
- 59. Süper W. Rechnerische Untersuchung Starting Beanspruchen Stahlbetonplatten, Forschg. Kolloquim Dortmund, Lehrstuhlfür Beton-Und Stahlbetonbau, n.d, 1980.
- 60. Murali G., Venkatesh J., Lokesh N., Nava T.R., Karthikeyan K. Comparative experimental and analytical modeling of impact energy dissipation of ultra-high performance fibre reinforced concrete, KSCE J. Civ. Eng. 2018; 22. https://doi.org/10.1007/s12205-017-1678-3.
- 61. Abirami T., Loganaganandan M., Murali G., Fediuk R., Vickhram Sreekrishna R., Vignesh T., et al. Experimental research on impact response of novel steel fibrous concretes under falling mass impact, Construct. Build. Mater. 2019; 222. https://doi.org/10.1016/j.conbuildmat.2019.06.175.
- 62. Karthikeyan M., Verapathran M., Abid S.R., Murali G. The combined effect of glass fiber mesh and steel fiber on two-layered preplaced aggregate concrete against drop weight impact, Materials 2022; 15. https://doi.org/10.3390/ma15165648.
- 63. Zhao J., Xie J., Wu J., Zhao C., Zhang B. Workability, compressive strength, and microstructures of one-part rubberized geopolymer mortar, J. Build. Eng. 2023; 68. https://doi.org/10.1016/j.jobe.2023.106088.
- 64. Dong S., Wang D., Ashour A., Han B., Ou J. Nickel plated carbon nanotubes reinforcing concrete composites: from nano/micro structures to macro mechanical properties, Compos. Appl. Sci. Manuf. 2021; 141. https://doi.org/10.1016/j.compositesa.2020.106228.
- 65. Carriço A., Bogas J.A., Hawreen A., Guedes M. Durability of multi-walled carbon nanotube reinforced concrete, Construct. Build. Mater. 2018; 164: 121–133. https://doi.org/10.1016/j.conbuildmat.2017.12.221.
- 66. Murali G., Karthikeyan K., Senthilpandian M., Wong L.S., Abid S.R., Kumar A.H. Synergistic effects of graphene oxide, steel wire mesh and fibers on the impact resistance of preplaced aggregate concrete. Journal of Building Engineering. 2024 Oct 15; 95: 110363. https://doi.org/10.1016/j.jobe.2024.110363.
- 67. Implementing Building Information Modeling in Architectural, Engineering and Construction Education: A Systematic Literature Review; https://doi.org/10.47857/irjms.2024.v05i04.01718.
- 68. An Overview about Using the 3D Printing Technology; https://doi.org/10.47857/irjms.2022.v03i01.064.
- 69. Van Cao V. Performance of NSM GFRP Retrofitted Postfire RC Slabs Under Monotonic and Cyclic Loadings. Civil Engineering Journal. 2024 Jun 1; 10(6): 1987–2006. https://doi.org/10.28991/CEJ-2024-010-06-017.
- 70. Sorilla J., Chu T.S., Chua A.Y. A UAV based concrete crack detection and segmentation using 2-stage convolutional network with transfer learning. HighTech and Innovation Journal. 2024 Sep 1; 5(3): 690–702. https://doi.org/10.28991/HIJ-2024-05-03-010.
- 71. Elbialy S., Elfarnsawy M., Salah M., Abdel-Aziz A., Ibrahim W. An Experimental study on steel fiber effects in high-strength concrete slabs. Civil Engineering Journal. 2025 Jan 1; 11(1): 215–29. https://doi.org/10.28991/CEJ-2025-011-01-013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc48b5e5-6f64-4da9-b441-7ef5d06b477c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.