PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fractional Composition of Nickel, Manganese and Iron in Municipal Solid Waste Incineration Bottom Ash

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fractions of Ni, Mn and Fe in the municipal solid waste incineration (MSWI) bottom ash were investigated. Three fractions of studied metals were separated according to the BCR procedure (acid soluble and exchangeable, reducible and oxidizable). Pseudo-total metal content, pH and dry mass in all samples were evaluated. The share of nickel in fractions followed the sequence: F4 (79.0%) > F3 (9.0%) > F1 (7.5%) > F2 (4.5%), for manganese: F4 (60.4%) > F1 (16.8%) > F2 (13.2%) > F3 (9.6%) and for iron: F4 (74.4%) > F2 (12.6%) > F3 (12.5%) > F1 (0.5%). Mobile pool of metals (F1-F3) contained the least of nickel (21.0%) and the most of manganese (39.7%).
Rocznik
Strony
235--240
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Institute of Environmental Engineering and Energy Production, Department of Technology in Environmental Engineering, Bialystok University of Technology, Wiejska 45A, 15-351 Białystok, Poland
Bibliografia
  • 1. Alamdari P., Golchin A., Saberi H. 2022. Distribution, contents and health risk assessment of metals (loids) in soil and plants growing in the vicinity of an aluminum smelter. International Journal of Environmental Science and Technology, 19, 4971-4986.
  • 2. Boostani H.R., Hardie A.G., Najafi-Ghiri M., Zare M. 2022. Chemical speciation and release kinetics of Ni in a Ni-contaminated calcareous soil as affected by organic waste biochars and soil moisture regime. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-022-01289-7
  • 3. Bruder-Hubscher V., F. Lagarde F., Leroy M.J.F., Coughanowr C., Enguehard, F. 2002. Application of a sequential extraction procedure to study the release of elements from municipal solid waste incineration bottom ash. Analytica Chimica Acta, 451(2), 285-295.
  • 4. Chimenos J.M., Fernández A.I., Miralles L., Segarra M., Espiell F. 2003. Short-term natural weathering of MSWI bottom ash as a function of particle size. Waste Management 23(10), 887-895.
  • 5. Cho B.H., Nam B.H., An J., Youn H. 2020. Municipal solid waste incineration (MSWI) ashes as construction materials - A review. Materials, 13(14), 3143.
  • 6. del Valle-Zermeño R., Gómez-Manrique J., Giro-Paloma J., Formosa J. & Chimenos, J.M. 2017. Material characterization of the MSWI bottom ash as a function of particle size. Effects of glass recycling over time. Science of The Total Environment, 581-582, 897-905.
  • 7. Dou X., Ren, F., Nguyen M.Q., Ahamed A., Yijn K., Chan, W.P., Chang V. W-C. 2017. Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renewable and Sustainable Energy Reviews, 79, 24-38.
  • 8. Gonzales M.L., Blanc D. & de Brauer C. 2019. Multi-Analytical approach and geochemical modeling for mineral trace element speciation in MSWI bottom-ash. Waste and Biomass Valorization, 10, 547-560.
  • 9. Haberl J., Schuster, M. 2019. Solubility of elements in waste incineration fly ash and bottom ash under various leaching conditions studied by a sequential extraction procedure. Waste Management, 87, 268-278.
  • 10. Huber F., Korotenko E., Šyc M., Fellner, J. 2021. Material and chemical composition of municipal solid waste incineration bottom ash fractions with different densities. Journal of Material Cycles and Waste Management, 23, 394-401.
  • 11. Jabłońska-Czapla M., Szopa S., Rosik-Dulewska Cz. 2014. Impact of mining dump on the accumulation and mobility of metals in the Bytomka River sediments. Archives of Environmental Protection, 40(2), 3-19.
  • 12. Keber S., Schirmer T., Elwert T., Goldmann D. 2020. Characterization of fine fractions from the processing of municipal solid waste incinerator bottom ashes for the potential recovery of valuable metals. Minerals, 10(10), 838.
  • 13. Kitamura H., Ueshima M., Back S., Sutthasil N., Sakanakura H., Ishigaki T., Yamada M. 2022. Impact of diatomite addition on lead immobilization in air pollution control residues from a municipal solid waste incinerator. Environmental Science and Pollution Research, 29(15), 21232-21243.
  • 14. Kizinievič O., Voišnienė V., Kizinievič V., Pundienė I. 2022. Impact of municipal solid waste incineration bottom ash on the properties and frost resistance of clay bricks. Journal of Material Cycles and Waste Management, 24, 237-249.
  • 15. Kumar S., Singh D. 2021. Municipal solid waste incineration bottom ash: a competent raw material with new possibilities. Innovative Infrastructure Solutions, 6(4), 201.
  • 16. Long L., Jiang X., Lv G., Chen Q., Liu X., Chi Y., Yan J., Zhao X., Kong L., Qiu, Q. 2022. Comparison of MSWI fly ash from grate-type and circulating fluidized bed incinerators under landfill leachate corrosion scenarios: the long-term leaching behavior and speciation of heavy metals. Environmental Science and Pollution Research, 29(10), 15057-15067.
  • 17. Łukowski A., Olejniczak J.I. 2020. Fractionation of cadmium, lead and copper in municipal solid waste incineration bottom ash. Journal of Ecological Engineering, 21(3), 112-116.
  • 18. Łukowski A., Wiater J. 2011. Influence of mineral fertilization on lead, cadmium and chromium fraction contens in soil. Polish Journal of Environmental Studies, 20(4), 951-960.
  • 19. Phoungthong K., Xia Y., Zhang H., Shao L., He P. 2016. Leaching toxicity characteristics of municipal solid waste incineration bottom ash. Frontiers of Environmental Science & Engineering,10, 399-411.
  • 20. Phua Z., Giannis A., Dong Z-L., Lisak G., Ng W.J. 2019. Characteristics of incineration ash for sustainable treatment and reutilization. Environmental Science and Pollution Research, 26(17), 16974-16997.
  • 21. Pöykiö R., Mäkelä M., Nurmesniemi H., Nurmesniemi H., Dahl O., Oguchi M. 2013. Application of the BRC sequential extraction scheme for assessing the leaching of elements in wood-based ash fractions from a large-sized (115 MW) industrial power plant of a pulp and board mill. Waste and Biomass Valorization, 4, 821-830.
  • 22. Pöykiö R., Mäkelä M., Watkins G., Nurmesmeni H., Dahl O. 2016. Heavy metals leaching in bottom ash and fly ash fractions from industrial-scale BFB-boiler for environmental risks assessment. Transactions of Nonferrous Metals Society of China, 26(1), 256-264.
  • 23. Shi Y., Li Y., Yuan X., Fu J., Ma Q., Wang Q. 2020. Environmental and human health risk evaluation of heavy metals in ceramsites from municipal solid waste incineration fly ash. Environmental Geochemistry and Health, 42(1), 3779-3794.
  • 24. Staszewski T., Malawska M., Studnik-Wójcikowska B., Galera H., Wiłkomirski B. 2015. Soil and plants contamination with selected heavy metals in the area of a railway junction. Archives of Environmental Protection, 41(1), 35-42.
  • 25. Vateva I., Laner D. 2020. Grain-size specific characterisation and resource potentials of municipal solid waste incineration (MSWI) bottom ash: A German case study. Resources, 9(6), 66-90.
  • 26. Wielgosiński G., Wasiak D., Zawadzka, A. 2014. The use of sequential extraction for assessing environmental risks of waste incineration bottom ash. Ecological Chemistry and Engineering, 21(3), 413-423.
  • 27. Wu B., Wang D., Chai X., Takahashi F., Shimaoka T. 2016. Characterization of chlorine and heavy metals for the potential recycling of bottom ash from municipal solid waste incinerators as cement additives. Frontiers of Environmental Science & Engineering, 10(8). https://doi.org/10.1007/s11783-016-0847-9
  • 28. Yang Z., Chen Y., Sun Y., Liu L., Zhang Z., Ge X. 2016. The partitioning behavior of trace element and its distribution in the surrounding soil of a cement plant integrated utilization of hazardous wastes. Environmental Science and Pollution Research, 23(14), 13943-13953.
  • 29. Yao J., Li W-B., Kong Q-N., Wu Y-Y., He R., Shen D-S. 2010. Content, mobility and transfer behavior of heavy metals in MSWI bottom ash in Zhejiang province, China. Fuel, 89(3), 616-622.
  • 30. Zimmerman A.J., Weindorf D.C. 2010. Heavy metal and trace metal analysis in soil by sequential extraction: A Review of procedures. International Journal of Analytical Chemistry, 387803. https://doi.org/10.1155/2010/387803
  • 31. Zhu J., Wei Z., Luo Z., Yu L., Yin K. 2021. Phase changes during various treatment processes for incineration bottom ash from municipal solid wastes: A review in the application-environment nexus. Environmental Pollution, 287, 117618.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc473c49-1ab9-4692-9723-6c8f24993889
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.