PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strategic analysis of implementation assets and threats

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main goal of the work is to support the marketing strategy using the characteristics created on the base of the game theory and uncertain knowledge. We want to elaborate algorithm, which does not require game-playing investigation. The additional aim consists in adaptating the game strategy to the concrete e.g. economic situation, described by selected, specific parameters. The next aim consists in exploitation uncertain knowledge as a data also. Game theory is the part of mathematics approach extended by Nash and adopted to psychology, sociology, politics, economics and informatics (artificial intelligence) problems. Game Theory provides mathematical tools for analyzing situations in which parties, called players, make decisions that are interdependent. This causes each player to consider the other player’s possible decisions, or strategies, in formulating his own strategy. This approach based on the assumption, that a solution to a game describes the optimal decisions of the players, who may have similar, opposed, or mixed interests, and the outcomes that may result from these decisions. This will be described as an example.
Rocznik
Strony
65--74
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • Institute of Computer and Information Sciences, Technical University of Czestochowa Czestochowa, Poland
  • Institute of Computer and Information Sciences, Technical University of Czestochowa Czestochowa, Poland
Bibliografia
  • [1] Straffin, P.D. (2002). Game Theory and Strategy. New Mathematical Library published by The Mathematical Association of America.
  • [2] Owen, G. (2003). Game Theory. Emerald Group Publishing.
  • [3] Henkelman, G., Uberuaga, B.P., & Jónsson, H. (2000). A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 113, 9901-9904.
  • [4] Carfı, D., & Musolino, F. (2012). Game theory model for European government bonds market stabilization: a saving-State proposal. MPRA paper, 1-27.
  • [5] Fleming, W.H., & Souganidis, P.E. (1989). On the existence of value functions of two-player, zero-sum stochastic differential games. Indiana University Mathematics Journal, 38, 2, 293-314.
  • [6] Kumar, D., Singh, J., Singh, O.P, & Seema (2013). A fuzzy logic based decision support system for evaluation of suppliers in supply chain management practices. Mathematical and Computer Modelling, 58, 11-12, 1679-1695.
  • [7] Chalco-Cano, Y., Rufi´an-Lizana, A., Rom´an-Flores H., & Jim´enez-Gamero M.D. (2013). Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets and Systems, 219, 49-67.
  • [8] Pawlak, Z. (1985). Rough sets and fuzzy sets. Fuzzy Sets and Systems, 17, 1, 99-102.
  • [9] Pawlak, Z. (1982). Rough sets. International Journal of Computer and Information Sciences, 11, 5, 341-356.
  • [10] Beynon, M., Curry, B., & Morgan, P. (2000). The Dempster-Shafer theory of evidence: an alternative approach to multicriteria decision modelling. The International Journal of Management Science - Omega, 28, 1, 37-50.
  • [11] Jøsang, A. (2016). Subjective Logic, A Formalism for Reasoning Under Uncertainity. Springer-Verlag, XXI.
  • [12] Gray, R.M. (2011). Entropy and information theory. Springer Science and Business Media.
  • [13] Myerson, R.B. (2013). Game Theory: Analysis of Conflict First Harvard University Press.
  • [14] Goeree, J.K., & Holt, Ch.A. (1999). Stochastic game theory: For playing games, not just for doing theory. Proceedings of the National Academy of Sciences of the USA, 96(19), 10564-10567.
  • [15] Geiler, P., & Renneboog, L. (2016). Executive Remuneration and the Payout Decision. Corporate Governance An International Review, 24, 1, 42-63.
  • [16] Neyman, A., & Okada, D. (1999). Strategic entropy and complexity in repeated games. Games and Economic Behavior, 29, 1-2, 191-223.
  • [17] Mandal, K., & Basu, K. (2015). Simpler solution to group decision making problems based on interval-valued hesitant fuzzy sets and a new approach to find critical path using hesitant fuzzy. International Journal of Pure and Applied Mathematic, 101, 4, 445-461
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc442a2e-55da-4517-a4cb-511ba9279685
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.