PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A condition-based maintenance for complex systems consisting of two different types of components

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
14th Summer Safety & Reliability Seminars - SSARS 2020, 26-30 September 2020, Ciechocinek, Poland
Języki publikacji
EN
Abstrakty
EN
A complex system consisting of monitored and non-monitored components is analyzed. Monitored components are subject to a degradation gamma process. Non-monitored components are subject to external failures. A Condition-Based Maintenance and an inspection policy are applied to reduce the impact of the failures in the monitored components. When a failure occurs, maintenance team performs a corrective replacement after a certain delay time. An opportunistic maintenance strategy is also implemented, meaning that a maintenance intervention can be used as an opportunity for preventive maintenance of monitored components. Each maintenance task implies a certain cost and each monitored component is assumed to provide a reward. The expected cost of the whole system is minimized through the optimization of the preventive thresholds and the time between inspections. Numerical examples are obtained from applying a blend of Genetic Algorithm and Monte-Carlo simulation.
Twórcy
  • University of Extremadura, Cáceres, Spain
  • University of Extremadura, Cáceres, Spain
  • University of Extremadura, Cáceres, Spain
Bibliografia
  • [1] Abdel-Hameed, M. 1975. A gamma wear process. IEEE Transactions in Reliability 24(2), 152-153.
  • [2] Asmussen, S. 2003. Applied probability and queues (2nd Edition). Applications of Mathematics: Stochastic Modelling and Applied Probability 51, Springer-Verlag, New York.
  • [3] Ba, H. T., Cholette, M. E., Borghesani, P., Zhou, Y. & Ma, L. 2009. Opportunistic maintenance considering non-homogeneous opportunity arrivals and stochastic opportunity durations. Reliability Engineering & System Safety 140, 151-161.
  • [4] Barlow, R. & Hunter, L. 1960. Optimum preventive maintenance policies. Operations Research 8(1), 90-100.
  • [5] Bertoin, J. 1996. Lévy Processes. Cambridge University Press.
  • [6] Caballé, N. & Castro, I. T. 2017. Analysis of the reliability and the maintenance cost for finite life cycle systems subject to degradation and shocks. Applied Mathematical Modelling 52, 731-746.
  • [7] Castanier, B., Grall, A. & Bérenguer, C. 2005. A condition-based maintenance policy with nonperiodic inspections for a two-unit series system. Reliability Engineering & System Safety 87(1), 109-120.
  • [8] Castro, I. T., Basten, R. J. I. & van Houtum, G. J. 2020. Maintenance cost evaluation for heterogeneous complex systems under continuous monitoring. Reliability Engineering & System Safety 200, 106745.
  • [9] Castro, I. T. & Landesa, L. 2019. A dependent complex degrading system with non-periodic inspection times. Computers & Industrial Engineering 133, 241-252.
  • [10] Cho, D. I. & Parlar, M. 1991. A survey of maintenance models for multi-unit systems. European Journal of Operational Research 51, 1-23.
  • [11] Çinlar, E., Bazant, Z. P. & Osman, E. 1977. Stochastic process for extrapolating concrete creep. Journal of Engineering Mechanics 103 (EM6), 1069-1088.
  • [12] Dieulle, L., Bérenguer, C., Grall, A. & Roussignol, M. 2003. Sequential conditionbased maintenance scheduling for a deteriorating system. European Journal of Operational Research 150, 451-461.
  • [13] Ding, F. & Tian, Z. 2012. Opportunistic maintenance for wind farms considering multilevel imperfect maintenance thresholds. Renewable Energy 45, 175-182.
  • [14] Grall, A., Dieulle, L., Bérenguer, C. & Roussignol, M. 2002. Continuous-time predictive-maintenance scheduling for a deteriorating system. IEEE Transactions on Reliability 51(2), 141-250.
  • [15] Huynh, K. T. 2020. A hybrid condition-based maintenance model for deteriorating systems subject to non-memoryless, IEEE Transactions on Reliability 69(2), 781-815.
  • [16] Keizer, M. C. A. O., Flapper, S. D. P. & Teunter, R. H. 2017. Condition-based maintenance policies for systems with multiple dependent components: A review. European Journal of Operational Research 261(2), 405-420.
  • [17] Kobbacy, K. A. H. & Murthy, D. N. 2008. Complex System Maintenance Handbook. Springer Series in Reliability Engineering.
  • [18] Marseguerra, M. & Zio, E. 2002. Condition-based maintenance optimization by means of genetic algorithms and Monte-Carlo simulation. Reliability Engineering & System Safety 77(2), 151-165.
  • [19] McCall, J. J. 1963. Operating characteristics of opportunistic replacement and inspection policies. Management Sciences 10(1), 85-97.
  • [20] Mercier, S. & Castro, I. T. 2019. Stochastic comparisons of imperfect maintenance models for a gamma deteriorating system. European Journal of Operational Research 273(1), 237-248.
  • [21] Mercier, S. & Pham, H. H. 2014. A conditionbased imperfect replacement policy for a periodically inspected system with two dependent wear indicators. Applied Stochastic Models in Business and Industry 30, 766-782.
  • [22] Minou, C. A., Keizaer, O., Flapper, S. D. P. & Teunter, R. H. 2017. Condition-based maintenance policies for systems with multiple dependent components: A review. European Journal of Operational Research 261(2), 405-420.
  • [23] Van Noortwijk, J. M. 2009. A survey of the application of gamma processes in maintenance. Reliability Engineering & System Safety 94(1), 2-21.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc43d1c1-a6ab-43da-b7d3-eaeb66d2e792
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.