PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Method of Transferring Topology Optimization Results Directly to the CAD System Database

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a method of transferring topological optimization results directly to CAD system. The devel- oped method is based on sequential removal and addition of material, ignoring lesser fragments of the model. The input data includes coordinates of nodes imported from the model of finite element method optimized object. The algorithm is able to recognize geometry patterns during material addition and subtraction. Based on the results of the recognition process, individual 3D features are placed in CAD design tree (like „Feature Manager” design tree in Solidworks, used in the procedure described in the article below). Thus, the described algorithm allows for convenient and quick editing of transferred geometry of the optimized object directly in the CAD environment. The algorithm was tested on various examples of 2D and 3D models. The execution code of the presented method was written in Python programming language, and the macro for the CAD program was written in VB.NET. The proposed solution is independent of the optimizer used.
Twórcy
  • Faculty of Mechanical Engineering, Poznań University of Technology, ul. Jana Pawła II 24, 61-139 Poznań, Poland
  • Faculty of Mechanical Engineering, Poznań University of Technology, ul. Jana Pawła II 24, 61-139 Poznań, Poland
  • Faculty of Mechanical Engineering, Poznań University of Technology, ul. Jana Pawła II 24, 61-139 Poznań, Poland
Bibliografia
  • 1. Lin C.Y., Chao L.S. Automated image interpreta- tion for integrated topology and shape optimiza- tion. Structural and Multidisciplinary Optimiza- tion. 2000; 20: 125–137.
  • 2. Lin C.Y., Chou Y.H. Automated structural optimi- zation system for integrated topology and shape optimization. Journal of the Chinese Institute of Engineers. 2008; 31: 745–756.
  • 3. Chacón J.M, Bellido J.C, Donoso A. Integration of topology optimized designs into CAD/CAM via an IGES translator. 2014; 50: 1115–1125.
  • 4. Tang P.S., Chang K.H. Integration of topology and shape optimization for design of structural components. Structural and Multidisciplinary Optimiza- tion. 2001; 22: 65–82.
  • 5. Hsu M.H., Hsu Y.L. Interpreting three-dimensional structural topology optimization results. Comput- ers and Structures. 2005; 83: 327–337.
  • 6. Larsen S., Jensen C.G. Converting Topology optimi- zation Results into Parametric CAD Models. Comput- er-Aided Design and Applications. 2009; 6: 407–418.
  • 7. Cuilliѐre J.C., Franço V., Nana A. Automatic Con- struction of structural CAD models from 3D topol- ogy optimization. Computer-Aided Design and Ap- plications. 2017; 15: 107–112.
  • 8. Yin G., Xiao X., Cirak F. Topologically robust CAD model generation of structural optimization. Computer methods in applied mechanics and engi- neering. 2020; 369: 113102.
  • 9. Kresslein J., Haghighi P., Park J., Satchit R., Sutradhar A., Shah J.J. Automated cross-sectional shape recovery of 3D branching structures from point cloud. Journal of Computational Desing and Enigneering. 2018; 5: 368–378.
  • 10. Shabani B., Dukovski V. Integration of Reverse Engineering and Topology Optimization with Ad- ditive Manufacturing. 2022; 19(1): 164–175.
  • 11. https://www.tiobe.com/tiobe-index/ [accessed 06 Nov. 2021].
  • 12. https://insights.stackoverflow.com/trends?t ags=python%2Cc%2Cc%2B%2B%2Cvb. net%2Cjava%2Cjavascript [accessed 06 Nov. 2021].
  • 13. https://pypl.github.io/PYPL.html [accessed 06 Nov. 2021].
  • 14. Guo L., Zhou M., Lu Y., Yang T., Yang F. A hy- brid 3D feature recognition method based on rule and graph, Computer Integrated Manufacturing, 2021; 34: 257–281.
  • 15. Vasantha G., Purves D., Quigley J., Corney J., Sher- lock A., Randika G. Common design structures and substitutable feature discovery in CAD databases, Ad- vanced Engineering Informatics. 2021; 48: 101261.
  • 16. Fawcett T. An Introduction to ROC analysis. Pattern Recognition Letters. 2005; 27: 861–874.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc415027-c1c2-48fe-ad7d-fac39fec9b90
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.