PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of overlying water pH, dissolved oxygen and temperature on heavy metal release from river sediments under laboratory conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The heavy metal release experiments were conducted in the laboratory to examine the effects of 3 factors - pH, dissolved oxygen (DO), and temperature on the metal release from sediments taken from the Huangpu River. The metal concentrations in the dry sediments ranged from 0.030 to 0.296 mg g-1 for Cr, 0.021 to 0.097 mg g-1 for Ni, 0.014 to 0.219 mg g-1 for Cu, 0.035 mg to 0.521 mg g-1 for Zn, 0.0002 to 0.001 mg g-1 for Cd and 0.023 to 0.089 mg g-1 for Pb. Most of the metals found in the sediments were in the form of residual fraction, the exchangeable fraction consisted of only a small portion of total metals. The average dissolved metal concentrations in the overlying water during the 13-day period under different conditions were ranging from 0.82 to 1.93 μg L-1 for Cr, 1.08 to 4.19 μg L-1 for Ni, 40.79 to 82.28 μg L-1 for Cu, 20.30 to 29.96 μg L-1 for Zn, 1.57 to 4.07 μg L-1 for Cd, and 22.26 to 75.50 μg L-1 for Pb, respectively. Statistical interpretation of the data indicated that pH (7, 8, 9), dissolved oxygen DO (1.0 and 5.0 mg L-1) and temperature (4, 16, 25°C) had no significant effects on the heavy metal release under the studied conditions. Cu and Pb had the highest release flux, while Cd, Pb and Cu had higher mobility. The main factors controlling the metals release might be the inherent characters of metals and sediments.
Słowa kluczowe
Rocznik
Strony
28--36
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
  • University of Shanghai for Science and Technology
autor
  • University of Shanghai for Science and Technology
autor
  • University of Shanghai for Science and Technology
autor
  • University of Shanghai for Science and Technology
autor
  • University of Shanghai for Science and Technology
autor
  • University of Shanghai for Science and Technology
Bibliografia
  • [1]. Antoniadis, V., Tsadilas, C.D. & Ashworth, D.J. (2007) Monometal and competitive adsorption of heavy metals by sewage sludge-amended soil, Chemosphere, 68(3), pp. 489-494.
  • [2]. Aston, J.E., Apel, W.A., Lee, B.D. & Peyton, B.M. (2010) Effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13, Journal of Hazardous Materials, 184(1-3), pp. 34-41.
  • [3]. Atkinson, C.A., Jolley, D.F. & Simpson, S.L. (2007) Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments, Chemosphere, 69(9), pp. 1428-1437.
  • [4]. Biesuz, R., Pesavento, M., Gonzalo, A. & Valiente, M. (1998) Sorption of proton and heavy metal ions on a macroporous chelating resin with an iminodiacetate active group as a function of temperature, Talanta, 47(1), pp. 127-136.
  • [5]. Butler, B.A. (2009) Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments, Water Research, 43(5), pp. 1392-1402.
  • [6]. Covelo, E.F., Vega, F.A. & Andrade, M.L. (2007) Heavy metal sorption and desorption capacity of soils containing endogenous contaminants, Journal of Hazardous Materials, 143(1-2), pp. 419-430.
  • [7]. Echeverrı́a, J., Indurain, J., Churio, E. & Garrido, J. (2003) Simultaneous effect of pH, temperature, ionic strength, and initial concentration on the retention of Ni on illite, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 218(1-3), pp. 175-187.
  • [8]. Echeverría, J.C., Zarranz, I., Estella, J. & Garrido, J.J. (2005) Simultaneous effect of pH, temperature, ionic strength, and initial concentration on the retention of lead on illite, Applied Clay Science, 30(2), pp. 103-115.
  • [9]. Equeenuddin, S.M., Tripathy, S., Sahoo, P.K. & Panigrahi, M.K. (2013) Metal behavior in sediment associated with acid mine drainage stream: Role of pH, Journal of Geochemical Exploration, 124(0), pp. 230-237.
  • [10]. Green-Ruiz, C., Rodriguez-Tirado, V. & Gomez-Gil, B. (2008) Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali: pH, salinity and temperature effects, Bioresource Technology, 99(9), pp. 3864-3870.
  • [11]. Helios-Rybicka, E., Calmano, W. & Breeger, A. (1995) Heavy metals sorption/desorption on competing clay minerals; an experimental study, Applied Clay Science, 9(5), pp. 369-381.
  • [12]. Ho, H.H., Swennen, R., Cappuyns, V., Vassilieva, E., Van Gerven, T. & Tran, T.V. (2012). Potential release of selected trace elements (As, Cd, Cu, Mn, Pb and Zn) from sediments in Cam River-mouth (Vietnam) under influence of pH and oxidation, Science of The Total Environment, 435-436(0), pp. 487-498.
  • [13]. Ibragimow, A., Walna, B. & Siepak, M. (2013) Physico-chemical parameters determining the variability of actually and potentially available fractions of heavy metals in fl uvial sediments of the middle ODRA River, Archives of Environmental Protection, 39(2), pp. 3-16.
  • [14]. Jing, Y.D., He, Z.L. & Yang, X.E. (2007) Effects of pH, organic acids, and competitive cations on mercury desorption in soils, Chemosphere, 69(10), pp. 1662-1669.
  • [15]. Li, Y.H., Zhang, D.F., Huang, Y.X., Yuan, S.J. & Xu, Z.H. (2015) Speciation and optimization of multi-elements analysis of river sediment in Shanghai by ICP-MS with a microwave-assisted digestion method, Asian Journal of Chemistry, 27(3), pp. 808-812.
  • [16]. Liu, B., Qu, J., Ning, D., Gao, Y., Zu, R. & An, Z. (2014) Grain-size study of aeolian sediments found east of Kumtagh Desert, Aeolian Research, 13(0), pp. 1-6.
  • [17]. Lourino-Cabana, B., Billon, G., Lesven, L., Sabbe, K., Gillan, D.C., Gao, Y., Leermakers, M. & Baeyens, W. (2014) Monthly variation of trace metals in North Sea sediments. From experimental data to modeling calculations, Marine Pollution Bulletin, 87(1-2), pp. 237-246.
  • [18]. Payán, M.C., Galan, B., Coz, A., Vandecasteele, C. & Viguri, J.R. (2012) Evaluation through column leaching tests of metal release from contaminated estuarine sediment subject to CO2 leakages from Carbon Capture and Storage sites, Environmental Pollution, 171(0), pp. 174-184.
  • [19]. Pérez-Esteban, J., Escolástico, C., Moliner, A. & Masaguer, A. (2013) Chemical speciation and mobilization of copper and zinc in naturally contaminated mine soils with citric and tartaric acids, Chemosphere, 90(2), pp. 276-283.
  • [20]. Pokorny, P., Pokorny, J., Dobicki, W., Senze, M. & Kowalska, G.M. (2015) Bioaccumulations of heavy metals in submerged macrophytes in the mountain river Biala Ladecka (Poland, Sudety Mts.), Archives of Environmental Protection, 41(4), pp. 81-90.
  • [21]. Ridgway, J. & Shimmield, G. (2002) Estuaries as repositories of historical contamination and their impact on shelf seas, Estuarine, Coastal and Shelf Science, 55(6), pp. 903-928.
  • [22]. Santana-Casiano, J.M., González-Dávila, M. & Millero, F.J. (2004) The oxidation of Fe(II) in NaCl-HCO3 − and seawater solutions in the presence of phthalate and salicylate ions: a kinetic model, Marine Chemistry, 85(1-2), pp. 27-40.
  • [23]. Tessier, A., Campbell, P.G.C. & Bisson, M. (1979) Sequential extraction procedure for the speciation of particulate trace metals, Analytical Chemistry, 51(7), pp. 844-851.
  • [24]. Udden, J.A. (1914) Mechanical composition of clastic sediments, Geological Society of America Bulletin, 25, pp. 655-744.
  • [25]. Usman, A.R.A. (2008) The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley, Egypt, Geoderma, 144(1-2), pp. 334-343.
  • [26]. Wang, L., Yuan, X., Zhong, H., Wang, H., Wu, Z., Chen, X. & Zeng, G. (2014). Release behavior of heavy metals during treatment of dredged sediment by microwave-assisted hydrogen peroxide oxidation, Chemical Engineering Journal, 258(0), pp. 334-340.
  • [27]. Watmough, S.A., Eimers, M.C. & Dillon, P.J. (2007) Manganese cycling in central Ontario forests: Response to soil acidification, Applied Geochemistry, 22(6), pp. 1241-1247.
  • [28]. Wentworth, C.K. (1922) A scale of grade and class terms for clastic sediments, Journal of Geography, 30(5), pp. 377-392.
  • [29]. Yang, J.Y., Yang, X.E., He, Z.L., Li, T.Q., Shentu, J.L. & Stoffella, P.J. (2006). Effects of pH, organic acids, and inorganic ions on lead desorption from soils. Environmental Pollution, 143(1), pp. 9-15.
  • [30]. Yang, Z., Wang, Y., Shen, Z., Niu, J. & Tang, Z. (2009) Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China, Journal of Hazardous Materials, 166(2-3), pp. 1186-1194.
  • [31]. Yu, G.B., Liu, Y., Yu, S., Wu, S.C., Leung, A.O.W., Luo, X.S., Xu, B., Li, H.B. & Wong, M.H. (2011) Inconsistency and comprehensiveness of risk assessments for heavy metals in urban surface sediments, Chemosphere, 85(6), pp. 1080-1087.
  • [32]. Yuan, S., Xi, Z., Jiang, Y., Wan, J., Wu, C., Zheng, Z. & Lu, X. (2007) Desorption of copper and cadmium from soils enhanced by organic acids, Chemosphere, 68(7), pp. 1289-1297.
  • [33]. Yuan, X., Zhang, L., Li, J., Wang, C. & Ji, J. (2014) Sediment properties and heavy metal pollution assessment in the river, estuary and lake environments of a fluvial plain, China, CATENA, 119(0), pp. 52-60.
  • [34]. Zhang, C., Yu, Z.-g., Zeng, G.-m., Jiang, M., Yang, Z.-z., Cui, F., Zhu, M.-y., Shen, L.-q. & Hu, L. (2014) Effects of sediment geochemical properties on heavy metal bioavailability, Environment International, 73(0), pp. 270-281.
  • [35]. Zhang, D., Lee, D.-J. & Pan, X. (2013) Desorption of Hg(II) and Sb(V) on extracellular polymeric substances: Effects of pH, EDTA, Ca(II) and temperature shocks, Bioresource Technology, 128(0), pp. 711-715.
  • [36]. Zhang, M., Cui, L., Sheng, L. & Wang, Y. (2009) Distribution and enrichment of heavy metals among sediments, water body and plants in Hengshuihu Wetland of Northern China, Ecological Engineering, 35(4), pp. 563-569.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc3ed03c-0127-42f0-b2f0-515396f4602d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.