PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of indium and nitrogen contents of InGaAsN quantum wells by HRXRD study supported by BAC calculation of the measured energy gap

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Determination of indium and nitrogen content in InGaAsN quantum wells (QWs) is often based on the analysis of highresolution X-ray diffraction (HRXRD) measurements. The comparison of diffraction curves of two similar samples, with and without nitrogen, together with an assumption of constant indium incorporation efficiency during the growth of layers with and without nitrogen, may lead to a large deviation in the determined In and N content. The HRXRD curve simulations supported by bandgap determination and calculations seem to be a solution of this problem. Comparison of the results achieved from simulated HRXRD curves with the calculations of all QWs transitions measured by contactless electro-reflectance (CER) can lead to reduction of deviations in composition determination of InGaAsN quantum wells. The proposed algorithm was applied for investigation of InGaAsN QWs grown by atmospheric pressure metalorganic vapor phase epitaxy (APMOVPE).
Wydawca
Rocznik
Strony
489--494
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
autor
autor
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, Z. Janiszewskiego 11/17, 50-372, Wrocław
autor
  • Inst. of Physics, Wrocław University of Technology, Wyb. Wyspia´nskiego 27, 50-370, Wrocław
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, Z. Janiszewskiego 11/17, 50-372, Wrocław
autor
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, Z. Janiszewskiego 11/17, 50-372, Wrocław
Bibliografia
  • [1] HENINI M., Dilute Nitride Semiconductors, Elsevier, School of Physics and Astronomy, University of Nottingham, UK, 2005.
  • [2] BISPING D. et al., IEEE J. Selected Topics in Quantum Electronics, 15 (2009), 968.
  • [3] PTAK A. J., FRANCE R., JIANG C-S, ROMERO M. J.,J. Crystal Growth, 311 (2009), 1876.
  • [4] LU W. et al., Semicond. Sci. Technol., 24 (2009), 105016.
  • [5] LI W., PESSA M., LIKONEN J., Appl. Phys. Lett., 78 (2001), 2864.
  • [6] ALBO A., CYTERMANN C., BAHIR G., FEKETE D., Appl. Phys. Lett., 96 (2010), 141102.
  • [7] FAN W.J. et al., Appl. Phys. Lett., 80 (2002), 4136.
  • [8] LEIBIGER G., GOTTSCHALCH V., SCHUBERT M., J. Appl. Phys., 90 (2001), 5951.
  • [9] YANG X., HEROUX J.B., JURKOVIC M.J., WANG W.I., J. Vac. Sci. Technol. B, 17 (1999), 1144.
  • [10] SEONG M. J., HANNA M. C., MASCARENHAS A.,Appl. Phys. Lett., 79 (2001), 3974.
  • [11] GRILLO V., ALBRECHT M., REMMELE T., STRUNK H. P., EGOROV A. Y., RIECHERT H., Journal Of Applied Physics, 90 (2001), 3792.
  • [12] SHAN W. et al., Phys. Rev. Lett., 82 (1999), 1221.
  • [13] ADACHI S., Properties of Semiconductor Alloys: Group – IV, III – V and II – VI Semiconductors, John Wiley & Sons, Ltd., 2009.
  • [14] HEROUX J. B., YANG X., WANG W. I., J. Appl.Phys., 92 (2002), 4361.
  • [15] KUDRAWIEC R. et al., J. Appl.Phys., 97 (2005), 053515.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc329965-4bd3-4d2a-ac90-71fa208d4ef1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.