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Abstract

The method of the statistical data sets uniforraitglysis based on Kolmogorov-Smirnov test is priesemhe
procedure of statistical data sets uniformity tesgtis proposed to be applied to the empirical swidimes in
operation states coming from the operation procesdethe complex technical systems. The proposed
procedure is practically applied to the analysid aniformity testing of the maritime ferry springdawinter
sets of realizations of the sojourn times in patfic operation states.

1. Introduction of the proposed models. Namely, the probabilibies
M | technical ¢ bel 0 the cl he initials system operation states, the prokasli
any real technical systems belong 1o the class Ol yansitions between the system operation states

::omplex s;t/)stemsf. First of a”’t't IS cgncel;nedtthe th and the unknown parameters of distributions of the
arge numpers of components and subsystems eé/ojourn times of the system operation processeén th
are built and with their operating complexity.

Modeling of the complicated system operation particular operation states and also the unknown

i difficult b fthe | ob parameters of the conditional multistate reliapilit
Processes IS difmcult because ol the 1arge nunmber -, safety functions of the system components in
the operation states, impossibility of their precis

- : o various operation states should be identified.slt i
defining and because of the impossibility of thadx also necessary the elaborating the methods ohgesti

describing the transitions between these states. Ththe hypotheses concerned with the conditional

chang(_as of the operation states of the sySterT%ojourn times of the system operation process in
operations processes cause the changes of theﬁgrticular operation states

systems reliability structures and also the chamfes
their components reliability functions. The general . - . .
semi-markovian model of the complex technicalz' El)(perlmental statistical data uniformity
systems operation processes is proposed in [1(]&]—[14ana ysIS

The rellablllty models of various multistate Comple We consider tesl based on K0|mogorov-8mirnov
systems are considered in [10]-{12]. The generakheorem [3] that can be used for testing whether tw
J0|nt models I|nk|ng these SyStem I’ellablllty moslel independent Samples of realizations of the

with the model of their operation processes, altmwi conditional sojourn times,, b, 0{12,...\}, b#l,

us for the reliability and safety analysis of the ) ) )
complex technical systems in variable operationd! Particular operation states of the system ojrat

conditions, are constructed in [16], [17], [20]]23 process are drawn from the population with the same

To be able to apply these general models pragticall distribution. _
in the evaluation and prediction the reliabilitydan /€ @ssume that we have two independent samples of

safety of real complex technical systems it isnOn-decreasing ordered realizations
necessary to elaborate the statistical methods " .
concerned with determining the unknown parameters &, k=12,...n,, b1 0{12..v}, b#l, (1)

123



Kotowrocki Krzysztof, Sosizska Joanna
Uniformity testing of statistical data sets frommgaex systems operation processes

and

92k

bl ?

k=12,..,n2, bl O{12,..v}, bzl,  (2)

of the sojourn timesd; and & b,10{12,....\},
b#l, respectively composed ofn;, and n}
realizations and we mark by

HZ () :nil#{k:eg,k <t,kO{12,...n}}},

bl

®3)

t20, b 0{12,..\}, b#l,

and

HZ (1) =ni2#{k L% <t, kO{L2,..n2}}

bl

t=0, bI0{12,...v}, bZl, 4)

their corresponding empirical distribution function

Then, according to Smirnov theorem, the sequence

of distribution functions given by the equation

A
Qun, 4) =P(D,,, <ﬁ) %)
defined forA > O,where
nn
nl_nél’ nz—nfn _nll+i12’ (6)
and
D,,,, = Max|Hj ()~ HE (1), (7)

is convergent. ag — o, to the limit distribution
function

QM= T(-H'e™, A>0. (8)
k=00
The distribution functiomQ(A )given by (8) is called

A distribution and its Tables of values are available

It means that for sufficiently large, and n, we

may use the following approximate formula
Qup, (4) Q(A), A>0. )

Hence it follows that if we define the statistic
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U,=D__+/n, (10)

mn2

whereD, . is defined by (6), then by (4) and (7) we
have

P(U, <u) = P(D,,,vn <u)
=P(D,,, <%) =Q,,, (1) 0Q(u) (12)

for u>0.

This result means that in order to formulate arxt ne
to verify the hypothesis that the samples of the

realizations the system conditional sojourn tingés
and Gj, b,10{12,...,v}, b#l, at the operation state
z, when the next transition is to the operation state
z, are comingfrom the population with the same

distribution, it is necessary to proceed accordmg
the following scheme:

- to fix the numbers of realizations, andn’ in

the samples,
- to collect the realizations (1) and (2) of the

conditional sojourn timesg, and §&; of the

system operation process in the samples,
- to find the realization of the empirical distrikrti

functions H/, (t) and H?(t ) defined by (3) and
(4) respectively, in the following forms:

HA ) =, (12)

where

1 L +1
Ny =0 an”m = nél’ (13)



SSARS 2010
Summer Safety and Reliability Semindime 20-26201Q Gdaisk-Sopot, Poland

and - to read from the Tablesf A distribution the
, value u=A, such that the following equality
ny =i {6 <6y, j0{12,...n;}, (14) holds
k=23..n;, PU, <u)=Q(u) =Q(4,) =1-a, (18)
is the numbers of the sojourn tin@& realizations - 0 determine the critical domain in the form of

the interval(u,+c )and the acceptance domain in

less than its realizatio the form of the intervak O,u >

21
n_b2| =0, t< g
nbl
n22
-, G <t<gy
r’|bl
» l1-a
n_b2|, 62 <t< g Critical domaina
r-]bl
Coe ~ .
HE(t) =1 2 , (15) u=4
—, Gt <t<g¥ Figure 1.The graphical interpretation of the critical
My domain and the acceptance domain for the two-
sample Smirnov-Kolmogorov test.
2n§|
nb'2 , ej”bzl T<ts 9;”%" - to calculate the realization of the statistit,
My defined by (1paccording to the formula
FI2 +
nlfl ! ' = l’ t > Hanl
nZ = Y u, _dr%mé Ny (29)
where where
2n2 +1 = 1 2
né'l =0, Ny h= nsl ! (16) d”%|”§| max{d”%l”é 'd”b”é }' (20)
e a, . =max{Hy () - Hi @) )| @)
n2 =#{i: {62 <%, j0{12,...n2}}, (a7) (L2
u{12,...,n,}},
k=23,..,n2,
d’ . =max{H; (67) ~ Hi (G, (22)

is the numbers of the sojourn tin& realizations
less than its realizatiod’", kO{12,...n2}},
- to formulate the null hypothesidd, and the

alternative hypothesisi , the following form: n = Ny N5 (23)
H,: The samples of realizations (1) and (2) are Ny +n;

coming from the populations with the same
distributions, - to compare the obtained valuel, of the

H,: The samples of realizations (1) and (2) are realization of the statistics, with the read from
coming from the populations with different the Tables critical valueu=A, and we verify

ijlsigti‘ilflt%r:as;significance levelr previously formulated the null hypothest$, in
' the following way:

125



Kotowrocki Krzysztof, Soszska Joanna
Uniformity testing of statistical data sets frommgaex systems operation processes

if the value u, does not belong to the critical — an operation statez, - ferry turning at Gdynia
domain, i.e. wheru, < u,then we do not reject the Port, _ _ ,

_ o ~ an operation statez,, —mooring operations at
hypothesisH,, otherwise if the valuel, belongs to Gdynia Port,

the critical domain, i.e. when, >u, then we reject an operation state; —unloading at Gdynia Port.

the hypothesiH,, . The ferry operation process is very regular in the
sense that the operation state changes are from the
particular statez,, b=12,...17, to the neighboring

3. The ferry operation process uniformity
analysis statez,,, b=12...17, and fromzg to z only.

e will apply two-sample Smirnov-Kolmogorov test

Baltic Sea between the Gdynia port in Poland agd th ﬂescrlr?ed mh a pfe"'ouz s_ecﬂog to vern‘ydt_he
Karlskrona port in Sweden according to a regular ypotheses that spring and winter data sets ceasist

everyday timetable. Taking into account the Of the ferry conditional sojourn timesg,,.,,
ope_ratio_n process o_f the _cons_idered ferry Wwep=12..17, in particular operation statesz,),
distinguish the following as its eighteen operation b=12..17, to the neighboring operation state,,

states: b=12,..17, and the ferry conditional sojourn time

— an operation state, - loading at Gdynia Port, . .
- an operation statez, —unmooring operations at 615, from the operation stata,, to the operation

We consider a passenger ro-ro ship operating i

Gdynia Port, state z,are from the populations with the same
- an operation state, —leaving Gdynia Port and distribution.
navigation to “GD” buoy, The procedure of testing the uniformity for data

- an operation statez, - navigation at restricted 9given in the Appendix 5A inrables A1-A43] for

waters from “GD” buoy to the end of Traffic spring and inTables 5-83] for winter suggested in
Separation Scheme a previous section in particular operation states i

~ an operation state, - navigation at open waters exemplary illugtrateq for the realizations of tleery
from the end of Traffic Separation Scheme to conditional sojourn time,.
“Angoring” buoy, For spring data, given in the Appendix 5ATiables
- an operation statez, - navigation at restricted 1-4, [3] the conditional sojourn timeﬁll2 has the
waters from “Angoring” buoy to “Verko” Berth at empirical distribution function
Karlskrona,
- an operation statez, -mooring operations at
Karlskrona Port,
- an operation statez, - unloading at Karlskrona
Port,
- an operation state, - loading at Karlskrona Port,
- an operation state,, - unmooring operations at
Karlskrona Port,
- an operation state , - ferry turning at Karlskrona
Port,
- an operation state,, - leaving Karlskrona Port
and navigation at restricted waters to “Angoring”
buoy,
- an operation state,, — navigation at open waters
from “Angoring” buoy to the entering Traffic
Separation Scheme,
- an operation statez,, — navigation at restricted
waters from the entering Traffic Separation
Scheme to “GD” buoy,
- an operation statez,. -navigation from “GD”

buoy to turning area,
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0, t<15 0 t<12
1/42, 15<t<20, 1/40, 12<t<15
2/42, 20<t<25 3/40, 15<t<18
3/42, 25<t<33 4/40, 18<t<19
4/42, 33<t<35 5/40, 19<t<20,
5/42, 35<t<37, 6/40, 20<t<25
6/42, 37<t<40 7140, 25<t<33
8/42, 40<t<43 9/40, 33<t<34
9/42, 43<t<44, 10/40, 34<t<36,
13/42, 44<t <45 11/40, 36<t <37,
14/42, 45<t <46, 14/40, 37<t <40,
15/42, 46<t <47, 15/40, 40<t<4]
17/42, 47<t <50, 16/40, 41<t<44,
18/42, 50<t <52 171740, 44<t <46,
19/42, 52<t <53 18/40, 46<t <48
21/42, 53<t <55 H?.(t) =120/40, 48<t <50,
H'.(t) =122/42, 55<t <57, 21/40, 50<t <53
23/42, 57<t <58 22/40, 53<t <55
24/42, 58<t <59, 23/40, 55<t <57,
26/42, 59<t <60, 24140, 57<t <59,
27142, 60<t<6], 25/40, 59<t <60,
29/42, 61<t<62 27140, 60<t <61
30/42, 62<t<63 28/40, 61<t <62
32/42, 63<t<65 29/40, 62<t<63
33/42, 65<t<67, 30/40, 63<t <65
34/42, 67<t<68 34/40, 65<t <67,
35/42, 68<t<7], 35/40, 67<t <69
36/42, 71<t<72, 36/40, 69<t<75
38/42, 72<t<75 38/40, 75<t<80,
39/42, 75<t<78 39/40, 80<t <90,
40/42, 78<t <84, 1 t>90.
41/42, 84<t<97,
1 t>97 The null hypothesis is

H,: The winter and spring realizations of the ferry

whereas for winter data given in the Appendix 5A in conditional sojourn times;, and 8, are from the

Tables 5-43] , the conditional sojourn timé’ has  population with the same distribution.
the empirical distribution function To verify this hypothesis we will use the two-saepl
Smirnov-Kolmogorov tesfl at the significance level

a = 005. From the table of thel distribution for
the significance levelr = 005 we get the critical
value A, =ul]136. Using the above empirical
distributions we form a common Table composed of
all their values. In th&able 1 t, are taken together
all realizations &% , k=12,..42, and &5,
k=12,...40, of the conditional sojourn timeg.,
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and g2 i.e. they represent all discontinuity points of Next, according to (20)-(22), froifable 1 we get

the empirical distribution functionHJ,(t )and
HZ(t) were they have jump in their valués,,(t,)

and HZ2(t,) respectively.

Table 1
t, = H,(t) | HA(t
Hkllz Dglzzk et 2(t) |H112(tk)_H122(tk)|

12 0 0 0

15 0 1/40 0.025
18 1/42 3/40 0.051
19 1/42 4/40 0.076
20 1/42 5/40 0.101
25 2/42 6/40 0.102
33 3/42 7/40 0.104
34 4/42 9/40 0.129
35 4/42 10/40 0.156
36 5/42 10/40 0.131
37 5/42 11/40 0.156
40 6/42 14/40 0.207
41 8/42 15/40 0.185
43 8/42 16/40 0.209
44 9/42 16/40 0.186
45 13/42 17/40 0.115
46 14/42 17/40 0.092
47 15/42 18/40 0.093
48 17/42 18/40 0.045
50 17/42 20/40 0.095
52 18/42 21/40 0.096
53 19/42 21/40 0.073
55 21/42 22/40 0.05
57 22/42 23/40 0.051
58 23/42 24/40 0.052
59 24/42 24/40 0.029
60 26/42 25/40 0.006
61 27/42 24/40 0.032
62 29/42 28/40 0.009
63 30/42 29/40 0.011
65 32/42 30/40 0.012
67 33/42 34/40 0.064
68 34/42 35/40 0.065
69 35/42 35/40 0.042
71 35/42 36/40 0.067
72 36/42 36/40 0.043
75 38/42 36/40 0.005
78 39/42 38/40 0.021
80 40/42 38/40 0.002
84 40/42 39/40 0.023
90 41/42 39/40 0.001
97 41/42 1 0.024
>97 1 1 0
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d4240 = nlka%HjZ(tk) - lez(tk)| 0J0.209,

and according to (23)

Thus, the realizatiow, of the statistics (19) is

U, =d,,,0\/N, =0.209/2048 0.946.

Since
u, 00.946<u =136,

then we do not have arguments to reject the null
hypothesisH ;.

After proceeding in an analogous way with data in
the remaining operation states we obtained the same
results, i.e., the conclusions that the sprig daiz

and the winter data sets are coming from the
populations with the identical distributions.
Consequently, we may join spring and winter
statistical data into one common more extensive set
of data and analyze them without differing the
seasons they are coming.

4. Statistical identification of the ferry
operation process on the basis of spring and
winter data

From the joined statistical data of the ferry ofiera
process that has been collected during spring and
winter given in the Appendix 5A ifables 1-8], on

the basis of methods and procedures given in [13],
the following basic operation process statistical
parameters are fixed:

- the number of the ferry operation process states
v =18,

- the ferry operation process observation/expertmen
time

© =82 days,

- the number of the ferry operation process
realizations

n(0) = 82,
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- the numbersn, (0) of the ferry operation process

transients in the particular operation statesat the
initial momentt = 0

n (0) =82,n,(0) =0, ..., ng(0) =0,
where

n@+n,0)+....+, ()= 82

- the vector of realizations of the numbers of the

ferry operation process transients in the particula
operation stateg, at the initial moment= 0

[n,©)] =[n, (0),n, (0),....n, (0)] = [820.,...0],

- the realizationn,, of the numbers of the ferry
operation process transitions from the stajeinto
the statez, during the experiment tim® =82 days

n,=0n,=82,n,=0,..

’ If-lll7 = 0’ n118=0’

n21=01 n22= 0! n23: 821 Ty r1217:0’ n218 :O’

o,n

n 172

171: :O’nl73:0’""nl717:o’nl718:82’

If-|l81 = 82'n182 =O'n183 = 0' ""n1817 = 0'n1818 = 0’

- the matrix of realizations,, of the numbers of the
ferry operation process transitions from the stgte
into the statez, during the experiment tim® =82
days

[nb|]=
My Nz oo Mg | 7082 0...0 0]
Ny, Ny ... Ny 0082..00
nl7lnl72"'nl718 O O 0082
820 0...00
| Mig1 Migo o+ Mhgig | - -

- the realizationn, of the total numbers of the ferry

operation process transitions from the operatiatest
z, during the experiment tim&® =82 days (the

sums of the numbers of the matfix, ) ]
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n=n,+n,+..+ 82,

118

n,=n, +n,, +...+n,,= 82,

n N, +Ne +...1N

181 182

18 = 1818 = 82’

- the matrix of realizations of the total numbefshe
ferry operation process transitions from the opeanat
state z, during the experiment tim® =82 days

[n,]=[n,n,,...n,]=[8282...82].

On the basis of the above statistical data it Esjixbe

to evaluate the basic parameters of the ferry
operation process semi-markovian model:

- the vector of realizations

[p(O)] = [10,0...,00],
of the initial probabilitiesp, (0), b=12,...18 (1)
[13] of the ferry operation process transientshia t

particular operation stateg at the moment= 0

- the matrix of realizations

[010...00]
001...00
[Pul=]- )
000...01
1100...00]

of the transition probabilitiegp,,, b,| =12,...18, (2)
[13] of the ferry operation process from the operat
state z, into the operation statez during the
experiment time® =82 days.

In the Tables 1-8 [13] there are presented the
realizationsg) , k =12,...82, for eachb =12,...17,
I=b+1 and b=18 1=1 of the ship operation
process conditional sojourn time&, b,=12,...17,

| =b+1 andb=18 | =1 in the statez, while the
next transition is the state during the experiment
time © =82 days.

These statistical data allow us, applying the m#gho
and procedures given in [13], to formulate and to
verify the hypotheses about the conditional
distribution functionsH,, (t) of the ferry operation

process sojourn time#, b=12..17, |=b+1
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and b=18 [|=1 in the statez, while the next
transition is to the state;, on the base of their
realizations 8}, j =12,...82.

bl ?

0, t< 231
hg(t) = <0.537t - 2_3])1.715
exp[-0.1979t - 231%™, t> 231

Using the methods and procedures given in [3], we

may verify the hypotheses on the distributionshef t
sojourn times and we have the following results:

the conditional sojourn timed, has a normal
distribution with the density function

(t-51415°
666563

- 1,

1
na(t) = 18256027 "
t [ (—oo, ),

- the conditional sojourn timé,, has a distribution

with not identified yet density function (the
distribution is none of the distinguished in [13]
distributions),

- the conditional sojourn timé,, has a Weibull's
distribution with the density function

0, t<2569
h,,(t) = {0.299t - 2569)>**°
exp[-0.086(t - 2569)%], t = 2569,

- the conditional sojourn timé,; has a distribution

with not identified yet density function (the
distribution is none of the distinguished in [13]
distributions),

- the conditional sojourn timé,, has a distribution

with not identified yet density function (the
distribution is none of the distinguished in [13]
distributions),

- the conditional sojourn timé,, has a normal
distribution with the density function

_ 2
expp-{L=37:269

h.(t) =
e (1) 12636

1
2514/21 ¥

t O (—co, ),

- the conditional sojourn timé&,, has a Weibull's
distribution with the density function
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the conditional sojourn timegd,, has a normal
distribution with the density function

(t-19)° o o
expl 15244]’tD( )

N(t) = 873J2mr

- the conditional sojourn timé,,, has a Weibull's
distribution with the density function

0, t<325
hy,,(t) =<0.047t - 325)1.319
exp[-0.0204t — 325)%*], t> 325,

- the conditional sojourn timé,,,, has a exponential
distribution with the density function

0, t=<169

t) =
Moxs(t) {0.3534exp[—0.3534(t -169)], t>169,

- the conditional sojourn timé,,,, has a chimney
distribution with the density function

0, t< 28]
0.0434, 281<t< 394,
16585 394<t< 43]
0.1756, 4.31<t< 619,
0, t> 619,

hlllZ(t) =

- the conditional sojourn timé,,,, has a Weibull's
distribution with the density function

0, t<19,
hy,.5(t) = < 0.344(t —19)***
exp[-0.146t —19)>%], t=19,

- the conditional sojourn timé,,;, has a chimney

distribution with the density function
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0, t <4165,
00014 4165<t<4795,
0.0151 4795<t<5215,
0.0033 5215<t <6055,
0, t > 6055,

hya,(t) =

- the conditional sojourn timé,,,. has a Weibull's
distribution with the density function

0, t<38
0.1466t — 38)"™
exp[-0.067(t — 38)>'*'], t =38,

hl415(t) =

- the conditional sojourn timé,,, has a chimney
distribution with the density function

0, t <2794,
0043 2794<t<3219,
0.1836 32.19<t<3644,
0.0034 3644<t<4706,
0, t=4706,

hyg6(t) =

- the conditional sojourn timé4,, has a distribution

with not identified yet density function (the
distribution is none of the distinguished in [13]
distributions),

- the conditional sojourn timé,,,, has a distribution

with not identified yet density function (the
distribution is none of the distinguished in [13]
distributions),

- the conditional sojourn timé,;, has a Weibull's
distribution with the density function

0, t<0

t) =
h181( ) {093 0.884 exp[_0.04gl.884]’ t > 0

Next, for the above distributions, the mean values

M, =E[G,], bl =22,..18 b#l, (11) [13] of the
ferry operation process conditional sojourn tinres

particular operation statesay be determined and [2]

they are as follows:

M,, =51415 M, =36.176, M, =37.268

[3]

M., = 6.807, M,, =19, M, = 46614,

131

[1] Barbu,

M, = 2829, M, ,=4459 M, = 25091
M., =513689 M, =51182 M, =33807,
M, =18.0309.

In the remaining cases the mean valivks = E[F,

after successful uniformity testing their approxiena
values are:

]

M,, = 2.533 M, =52393 M, =530188

M., = 4448 M, . =5473

1617 1718

5. Conclusion

The procedure of statistical data sets uniformity
analysis based on Kolmogorov-Smirnov test is
proposed to be applied to the empirical sojourrem
coming from the operation processes of complex
technical systems. The proposed procedure is
practically applied to the analysis and uniformity
testing of the maritime ferry spring and wintersset
realizations of the sojourn times in particular
operation states. Next, after successful uniformity
testing, the spring and winter data coming from the
ferry operation process were joined into common
data sets and the identification of the this preces
parameters was performed.
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