PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure characterization of welds in X5CrNiCuNb16-4 steel in overaged condition

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of the investigation of microstructure of the welded X5CrNiCuNb16-4 (17-4PH) steel after solution treatment and aging at 620°C for different periods. The microstructure and the phase composition of the steel was investigated using light microscopy (LM), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), transmission electron microscopy (TEM) and the X-ray diffraction (XRD). Hardness was measured for samples aged at different times. Density distributions of Cu precipitates were established. The investigation has shown that the microstructure of the X5CrNiCuNb16-4 steel welds after aging at 620 ° C consists of tempered martensite, fine Cu precipitates and austenite. It was observed that the size of the Cu precipitates increases with increasing the aging time, what affects the decrease of hardness. Simultaneously, the quantity of reversed austenite increases with increase of aging time. It was revealed that enrichment of the austenite in Ni, Cu and C affects the increase of Ms, but this factor does not determine the stability of austenite.
Rocznik
Strony
57--69
Opis fizyczny
Bibliogr. 34 poz., wykr., tab., rys.
Twórcy
autor
  • AGH University of Science and Technology in Krakow, Faculty of Metals Engineering and Industrial Computer Science, al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology in Krakow, Faculty of Metals Engineering and Industrial Computer Science, al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology in Krakow, Faculty of Metals Engineering and Industrial Computer Science, al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • Pedagogical University of Cracow, Faculty of Mathematics, Physics and Technical Science, Institute of Technology, ul. Podchorążych 2, 30-084 Kraków, Poland
Bibliografia
  • 1. Bilmes P. D., Solari M., Llorente C.L.: Characteristics and effects of austenite resulting from tempering of 13Cr-NiMo martensitic steel weld metals. Materials Characterization 46 (2001) 285–296.
  • 2. Antony K.C.: Aging Reactions in Precipitation Hardenable Stainless Steel. Metall. J. 15 (1963) 1595-1605.
  • 3. Murayama M., Katayama Y., Hono K.: Microstructural evolution in a 17-4 PH stainless steel after aging at 400 °C. Metallurgical and Material Transations A 30/2 (1999) 345–353.
  • 4. http://www.aksteel.com/pdf/markets_products/stainless/precipitation/17-4_ph_data_sheet.pdf, 11.06.2015.
  • 5. Ziewiec A., Zielińska–Lipiec A., Tasak E.: Microstructure of welded joints of X5CrNiCuNb16-4 (17-4 PH) martensitic stainless steel after heat treatment. Archives of Metallurgy and Materials 59/3 (2014) 965–970.
  • 6. Song Y., Li X., Rong L. and Li Y.: Anomalous phase transformation from martensite to austenite in Fe-13%Cr-4%Ni-Mo martensitic stainless steel. Journal of Materials Science and Technology 26/9 (2010) 823-826.
  • 7. Schönbauer B. M., Yanase K., Endo M.: The influence of various types of small defects on the fatigue limit of precipitation-hardened 17-4PH stainless steel. Theoretical and Applied Fracture Mechanics 87 (2017) 35-49.
  • 8. Tavares S. S. M., Machado C. L. C., Oliveira I. G., Martins, T. R. B. Masoumi M.: Damage associated with the interaction between hydrogen and microstructure in a high sulfur 17-4PH steel for studs. Engineering Failure Analysis, 82 (2017) 642-647.
  • 9. Daoxin D. L., Xiaohua L., Chengsong Z., Ao L. N.: Surface nanocrystallization of 17-4 precipitation-hardening stainless steel subjected to ultrasonic surface rolling process. Materials Science and Engineering A 726 (2018) 69-81.
  • 10. Bhadeshia H. K. D. H. and Edmonds D. V.: The Distribution of retained austenite in martensite and the influence of inter-lath crystallography, Proc. 3rd Int. Conf. On Martensitic Transformation, Cambridge, Massachusetts, U.S.A., 1979, 28-33.
  • 11. Sha W., Cerezo and Smith G. D. W.: Phase chemistry and precipitation reactions in maraging steels: Part I. Introduction and study of Co-containing C-300 steel, Metallurgical and Material Transations A 24 (1993) 1221-1232.
  • 12. Leem D.S., Lee Y.D., Jun J.H. and Choi C. S.: Amount of retained austenite at room temperature after reverse transformation of martensite to austenite in an Fe–13% Cr–7% Ni–3% Si martensitic stainless steel. Scripta Materialia 45 (2001) 772.
  • 13. Rao V.N. and Thomas G.: Proc. 3rd Int. Conf. On Martensitic Transformation, Cambridge, Massachusetts, U.S.A., 1979, 12-13.
  • 14. Kowalska J., Ratuszek W., Witkowska M., Zielińska–Lipiec A., Development of microstructure and texture in Fe-26Mn-3Si-3Al alloy during cold-rolling and annealing. Journal of Alloys and Compounds 615 (2014) 583–586.
  • 15. Kowalska J., Ratuszek W., Chruściel K.: Crystallographic relations between deformation and annealing texture in austenitic steels. Archives of Metallurgy and Materials 53/1 (2008) 131–137.
  • 16. Witkowska M., Zielińska-Lipiec A., Kowalska J., W. Ratuszek, Microstructural Changes in a High-Manganese Austenitic Fe-Mn-Al-C Steel, Archives of Metallurgy and Materials 59 (2014) 971–975.
  • 17. Das C. R. et al: Weldability of 17-4PH stainless steel in overaged heat treated condition. Science and Technology of Welding and Joining 11 (2006) 502-508.
  • 18. Tuz L.: Evaluation of Microstructure and Selected Mechanical Properties of Laser Beam Welded S690QL High-Strength Steel. Advances in Materials Science, 3/18 (2018) 34-42, https://doi.org/10.1515/adms-2017-0039.
  • 19. Pańcikiewicz K.: Structure and Properties of Welded Joints of 7CrMoVTiB10-10 (T24) Steel. Advances in Materials Science, 1/18 (2018) 37-47, https://doi.org/10.1515/adms-2017-0026.
  • 20. Tavakoli Shoushtari M. R., Moayed M. H. and Davoodi A.: Post-weld heat treatment influence on galvanic corrosion of GTAW of 17-4PH stainless steel in 3·5%NaCl Corrosion Engineering Science Technology 46 (2011) 415-424.
  • 21. Sun Y., Hebert R. J., Aindow M.: Effect of heat treatments on microstructural evolution of additively manufactured and wrought 17-4PH stainless steel, Materials and Design, 156 (2018) 429-440.
  • 22. Mudali Kamachi U., Bhaduri A. K., Gnanamoorthy J. B.: Localised corrosion behaviour of 17–4 PH stainless steel. Materials Science and Technology 6 (1990) 475-481.
  • 23. Jui-Hung W., Chih-Kuang L.: Effect of strain rate on high-temperature low-cycle fatigue of 17-4 PH stainless steels Materials Science and Engineering A 390 (2005) 291–298.
  • 24. Viswanathan U. K., Banerjee S., Krishnan R.: Effects of aging on the microstructure of 17-4 PH stainless steel. Materials Science and Engineering A 104 (1988) 181-189.
  • 25. Chung C.-Y., Tzeng Y. C.: Effects of aging treatment on the precipitation behavior of ε-Cu phase and mechanical properties of metal injection molding 17-4PH stainless steel. Materials Letters 237 (2019), 228-231.
  • 26. Matlack K. H., Bradley H. A., Thiele S., Kim J. Y., Wall J. J., Hee Joon Jung, Jianmin Qu, Laurence J. Jacobs. Nonlinear ultrasonic characterization of precipitation in 17-4PH stainless steel. NDT&E International 71, April (2015), 8-15.
  • 27. Yeli G., Auger M. A., Wilford K., Smith G. D.W., Bagot P. A.J., Moody M. P., Sequential nucleation of phases in a 17-4PH steel: Microstructural characterization and mechanical properties. Acta Materialia 125 (2017) 38-49.
  • 28. McWilliams B., Pramanik B., Kudzal A., Taggart-Scarff J., High strain rate compressive deformation behavior of an additively manufactured stainless steel, Additive Manufacturing 24 (2018) 432-439.
  • 29. Ziewiec A., Tasak E., Czech J.: Cracking of welded joints of the 17-4PH stainless martensitic steel precipitation hardened with copper, Archives of Metallurgy and Materials 50 (2012) 1055-1061.
  • 30. Trzepieciński T., Pieja T., Malinowski T., Smusz R., Motyka M.: Investigation of 17-4PH steel microstructure and conditions of elevated temperature forming of turbine engine strut. Journal of Materials Processing Technology 252 (2018) 191-200.
  • 31. Hu Z., Zhu H., Zhang H., Zeng X.: Experimental investigation on selective laser melting of 17-4PH stainless steel. Optics and Laser Technology, 87 (2017) 17-25
  • 32. Lo C. H. , Shek K. H., Lai J. K. L: Recent developments in stainless steels. Materials Science and Engineering R 65 (2009) 39–104.
  • 33. Ridley N., Stuart H., Zwell L.: Lattice parameter of Fe–C austenites at room temperature. Transactions of the Metallurgical Society of AIME, 245 (1969) 1834–1836.
  • 34. Ruhl R., Cohen M.: Splat quenching of iron–carbon alloys. Transactions of the Metallurgical Society of AIME 245 (1969) 241–251.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc279dae-6514-49db-a056-b3f63c56b51b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.