PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of frothers and particle size on the flotation kinetics of the Jameson Cell

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Determination of the flotation kinetic is crucial for optimization, simulation, and plant design for flotation processes. Even though there are many studies carried out to clarify the kinetic properties of the conventional flotation cells, there is not enough detailed study about the Jameson cell which is used more than 300 plants but no application in Turkey yet. One of the most important parameters affects the kinetic of flotation is a frother. The effects of common frothers on the kinetic of Jameson cell can be crucial due to the possible further application of the cell in European and Turkish flotation industries. The present study was performed out to reveal the kinetic properties of the Jameson cell by using both pure quartz and coal particles. Besides, the effects of three different types of frothers on the kinetic of the Jameson cell were investigated for various particles sizes. According to the results, aliphatic alcohol type frother (MIBC) provided higher recovery for fine particles, while polypropylene glycol type frother (AF65) gave a better ability to float medium and coarse size particles. Additionally, the results show that the Jameson cell was four times faster than the mechanical cell for medium size while the ratio was three times for coarse particles. Lastly AF65 can be used for flotation of coarse particles in the Jameson cell while MIBC can be preferred for fines.
Słowa kluczowe
Rocznik
Strony
829--838
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Kutahya Dumlupinar University, Mining Engineering Department, Kutahya, 43100, Turkey
  • Kutahya Dumlupinar University, Mining Engineering Department, Kutahya, 43100, Turkey
Bibliografia
  • AHMED, N., JAMESON, G.J., 1989. Flotation kinetics. Mineral Processing and Extractive Metallurgy Review: An International Journal, 5, Issue (1-4), 77-99.
  • APLING, A.C., ERSAYIN, S., 1986. Reproducibility of Semi-Batch Flotation Test Work with The Leeds Open-Top Cell and of Derived Kinetic Parameter., Trans. I.M.M., Sec.C, 95, C83-88.
  • ARBITER, N., HARRIS, C.C., 1962. Flotastion Kinetics, in Froth Flotation. 50 Anniversary Volume, A.I.M.E. (Ed. D.W. Fuerstaneu), 215-246.
  • ATKINSON, B.W., 1994. Hydrodynamic characteristics of a plunging jet reactor. Ph. D. Dissertation, University of Newcastle, Australia.
  • CORONA-ARROYO, M.A., LÓPEZ-VALDİVİESO, A., LASKOWSKİ, J.S., ENCİNAS-OROPESA, A.,2015, Effect of frothers and dodecylamine on bubble size and gas holdup in a downflow column. Miner. Eng. 2015, 81, 109–115.
  • ÇINAR, M., ŞAHBAZ, O., ÇINAR, F., KELEBEK, Ş., ÖTEYAKA, B., 2007. Effect of Jameson cell operating variables and design characteristics on quartz-dodecylamine flotation system. Elsevier- Minerals Engineering, 20, 1391-1396.
  • DEMIR, M.K., 2016. Comparison of the kinetic characteristics of the mechanical cell and Jameson cell. MSc Thesis, Dumlupinar University, Kutahya, Turkey.
  • DRZYMALA, J., KOWALCZUK, P.B., 2018. Classification of Flotation Frothers. Minerals 2018, 8, 53.
  • EVANS, G.M., ATKINSON, B. and Jameson, G.J., 1995. The Jameson Cell. Flotation Science and Engineering, Ed. Matis K.A., Marcel Dekker Ic.
  • GÜLSOY, Ö. Y., ERSAYIN, S., 1996. A New Approach to Kinetic Characterization of Semi Batch Flotation Tests. Changing Scopes In Min. Proc, 6th Min. Proc. Symp., 629-634.
  • KOWALCZUK, PB., SAHBAZ, O., DRZYMALA, J., 2011. Maximum size of floating particles in different flotation cells. Minerals Engineering 24 (8), 766-771.
  • KOWALCZUK, PB. and ZAWALA, J., 2016. A relationship between time of three-phase contact formation and flotation kinetics of naturally hydrophobic solids. Colloids and Surfaces A Physicochemical and Engineering Aspects 506, 371-377.
  • HAPUGODA, P., O’BRIEN, G., MILLAR, J., OFORI, P., FIRTH, B., 2010. Determınatıon of flotatıon kınetıcs of coal graın types ın a pılot scale jameson cell usıng coal graın analysıs method. XXV Internatıonal mıneral processıng congress (ımpc) 2010 proceedıngs / Brısbane, Qld, Australıa.
  • HARBORT, G., LAUDER, D., MIRANDA, J., MURPHY, A., 1999. Size by size analysis of operating characteristics of Jameson cell cleaners at the Bajo de Alumbrera Copper/Gold Concentrator. Mill operators conference-Innovation in operating practice for the 21st century.
  • HARBORT, G.J., MANLAPIG, E.V. VEDEBONO, S.K., 2002. Particle collection within the Jameson cell downcomer., Trans. IMM Section C, V. 111/Proc. Australas IMM, 307.
  • HOŞTEN, Ç., TEZCAN, A., 1990. The Influence of Frother Type on the Flotation Kinetics of a Massive Copper Sulphide Ore. Minerals Engineering, 3, Issue (6), 637-640.
  • JAMESON, G.J., 1988. A new concept in flotation column design. Prec. Column Flotation '88, Ed., KVSSastry, Phoenix, Arizona.
  • JOHANSSON, G., PUGH, R.J., 1992. The influence of particle size and hydro- phobicity on the stability of mineralized froths. Inter. J. Miner. Process., 34, 1–21.
  • LASKOWSKI, J., 1993. Frothers and flotation froth, Mineral Processing and Extractive Metallurgy Review. 12, 61-89.
  • POLAT, M. and CHANDER, S., 2000. First-order flotation kinetics models and methods for estimation of the true distribution of flotation rate constants. International Journal of Mineral Processing, 58, 145- 166.
  • ŞAHBAZ, O., UÇAR, A., OTEYAKA, B., 2013. Velocity gradient and maximum floatable particle size in the Jameson cell, Minerals Engineering. 79-85.
  • SAHBAZ, O., ERCETIN, U., OTEYAKA, B., 2012. Determination of turbulence and upper size limit in Jameson flotation cell by the use of Computational Fluid Dynamic modeling. Physicochemical Problems of Minerals Processing, 533-544.
  • SAHBAZ, O., UÇAR, A., ÖTEYAKA, B., 2017, Downcomer modification in Jameson cell and its effect on coarse particle flotation, Particulate Science and Technology, 37(4), 510-515.
  • TAO., D., 2004. Role of Bubble Size in Flotation of Coarse and Fine Particles—A Review. Separation Science and Technology, 39, 4, 741–760.
  • UÇAR, A. and YARGAN, M., 2009. Selective separation of boron values from the tailing of a colemanite processing plant. Separation and Purification Technology, 68, 1–8.
  • UÇURUM, M., 2009. Influences of Jameson flotation operation variables on the kinetics and recovery of unburned carbon. Powder Technology, 191, 3, 240-246.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc264861-1e0a-4e6a-8495-03141706fbaa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.