Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we discuss anti-synchronization between two identical new chaotic systems and anti-synchronization between another two identical new chaotic systems by active nonlinear control. The sufficient conditions for achieving the anti-synchronization of two new chaotic systems are derived based on Lyapunov stability theory. Numerical simulations are provided for illustration and verification of the proposed method.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
229--242
Opis fizyczny
Bibliogr. 20 poz., rys., wzory
Twórcy
autor
- Department of Mathematics, Zakir Husain Delhi College, University of Delhi, New Delhi-01
autor
- Department of Mathematics, University of Delhi, New Delhi-07
Bibliografia
- [1] L. M. Pecora and T. L Carroll: Synchronization in chaotic systems. PhysicalReview Letters, 64 (1990), 821-824.
- [2] M. Lakshmanan and K. Murali: Chaos in nonlinear oscillators: controlling and synchronization, World Scientific, Singapore, 1996.
- [3] S. K. Han, C. Kerrer and Y. Kuramoto: D-phasing and bursting in coupled neural oscillators. Physical Review Letters,75 (1995), 3190-3193.
- [4] B. Blasius, A. Huppert and L. Stone: Complex dynamics and phase synchronization in spatially extended ecological system. Nature, 399 (1999), 354-359.
- [5] M. Feki: An adaptive chaos synchronization scheme applied to secure communication. Chaos Solitons and Fractals, 18 (2003), 141-148.
- [6] E. Ott, C. Grebogi and J. A. Yorke: Controlling chaos. Physical Review Letters, 64 (1990), 1196-1199.
- [7] L. Tian, J. Xu and M. Sun: Chaos synchronization of the energy resource chaotic system with active control. Int. J. of Nonlinear Science, 3 (2007), 228-234.
- [8] J. H. Park, S. M. Lee and O. M. Kwon: Adaptive synchronization of Genesio- Tesi chaotic system via a novel feedback control. Physical Letters A, 371 (2007), 263-270.
- [9] J. Zhao and J. Lu: Using sampled data feedback control and linear feedback synchronization in a new hyper-chaotic system. Chaos Solitons and Fractals, 35 (2008), 376-382.
- [10] J. H Park and O.M. Kwon: A novel criterion for delayed feedbackcontrol of time delay chaotic systems. Chaos Solitons and Fractals, 17 (2003), 709-716.
- [11] X. Wu and J. Lu: Parameter identification and backstepping control of uncertain Lu system. Chaos Solitons and Fractals, 18 (2003) 721-729.
- [12] H. T. Yau: Design of adaptive sliding mode controller for chaos synchronization with uncertaintities. Chaos Solitons and Fractals, 22 (2004), 341-347.
- [13] Z. M. Ge and C. C. Chen: Phase synchronization of coupled chaotic multiple time scales systems. Chaos Solitons and Fractals, 20 (2004), 639-647.
- [14] Y.W. WANG and Z.H. GUAN: Generalized synchronization of continuous chaotic systems. Chaos Solitons and Fractals, 27 (2006), 97-101.
- [15] X. Zhang and H. Zhu: Anti-synchronization of two different hyper-chaotic systems via active and adaptive control. Int. J. of Nonlinear Science, 6 (2008), 216-223.
- [16] T. Chiang, J. Lin, T. Liao and J. Yan: Anti-synchronization of uncertain unified chaotic systems with dead-zone nonlinearity. Nonlinear Analysis, 68 (2008), 2629-2637.
- [17] J. Qiang: Projective synchronization of a new hyper-chaotic Lorenz system. PhysicalLetters A, 370 (2007), 40-45.
- [18] Y. Jian-Ping and L. Chang-Pin: Generalized projective synchronization for the chaotic Lorenz system and the chaotic Chen system. J. Shanghai Univ., 10 (2006), 299-304.
- [19] R. H. Li, W. Xu and S. Li: Adaptive generalized projective synchronization in different chaotic systems based on parameter identification. Physical Letters A, 367 (2007), 199-206.
- [20] W. Hahn: The Stability of Motion, Springer-Verlag, New York, (1967).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc232fb9-7c26-4efc-94c6-4ef52e2dcd1e