PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recent developments in simulation-driven multi-objective design of antennas

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper addresses computationally feasible multi-objective optimization of antenna structures. We review two recent techniques that utilize the multi-objective evolutionary algorithm (MOEA) working with fast antenna replacement models (surrogates) constructed as Kriging interpolation of coarse-discretization electromagnetic (EM) simulation data. The initial set of Pareto-optimal designs is subsequently refined to elevate it to the high-fidelity EM simulation accuracy. In the first method, this is realized point-by-point through appropriate response correction techniques. In the second method, sparsely sampled high-fidelity simulation data is blended into the surrogate model using Co-kriging. Both methods are illustrated using two design examples: an ultra-wideband (UWB) monocone antenna and a planar Yagi-Uda antenna. Advantages and disadvantages of the methods are also discussed.
Rocznik
Strony
781--789
Opis fizyczny
Bibliogr. 39 poz., rys., wykr., tab.
Twórcy
autor
  • Engineering Optimization & Modeling Center, School of Science and Engineering, Reykjavík University, Menntavegur 1, 101 Reykjavík, Iceland
  • Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
Bibliografia
  • [1] H. Schantz, The Art and Science of Ultrawideband Antennas, Artech House, London, 2005.
  • [2] J. Volakis, C.-C. Chen, and K. Fujimoto, Small Antennas: Miniaturization Techniques and Applications, McGraw-Hill Professional, London, 2010.
  • [3] F.B. Gross, Frontiers in Antennas: Next Generation Design & Engineering, McGraw-Hill Professional, London, 2011.
  • [4] S. Koziel, F. Mosler, S. Reitzinger, and P. Thoma, “Robust microwave design optimization using adjoint sensitivity and trust regions”, Int. J. RF and Microwave CAE 22, 10–19 (2012).
  • [5] D. Nair and J.P. Webb, “Optimization of microwave devices using 3-D finite elements and the design sensitivity of the frequency response”, IEEE Trans. Magn. 39, 1325–1328 (2003).
  • [6] J.I. Toivanen, J. Rahola, R.A.E. Makinen, S. Jarvenpaa, and P. Yla-Oijala, “Gradient-based antenna shape optimization using spline curves”, Ann. Review Progress in Applied Comp. Electromagnetics 1, 908–913 (2010).
  • [7] CST Microwave Studio, ver. 2012, CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, 2012.
  • [8] Ansys HFSS, ver. 14.0 (2012), ANSYS, Inc., Southpointe 275 Technology Drive, Canonsburg, PA 15317.
  • [9] J.W. Bandler, Q.S. Cheng, S.A. Dakroury, A.S. Mohamed, M.H. Bakr, K. Madsen, and J. Søndergaard, “Space mapping: the state of the art”, IEEE Trans. Microwave Theory Tech. 52, 337–361 (2004).
  • [10] S. Koziel, S. Ogurtsov, and S. Szczepanski, “Rapid antenna design optimization using shape-preserving response prediction”, Bull. Pol. Ac.: Tech. 60 (1), 143–149 (2012).
  • [11] S. Koziel and S. Ogurtsov, “Rapid design optimization of antennas using space mapping and response surface approximation models”, Int. J. RF & Microwave CAE 21, 611–621 (2011).
  • [12] I. Couckuyt, S. Koziel, and T. Dhaene, “Surrogate modeling of microwave structures using kriging, co-kriging and space mapping”, Int. J. Numerical Modelling: Electronic Devices and Fields 26, 64–73 (2013).
  • [13] S. Koziel and J.W. Bandler, “Accurate modeling of microwave devices using kriging-corrected space mapping surrogates”, Int. J. Numerical Modelling 25, 1–14 (2012).
  • [14] S. Koziel and S. Ogurtsov, “Model management for cost-efficient surrogate-based optimization of antennas using variable-fidelity electromagnetic simulations”, IET Microwaves Ant. Prop. 6, 1643–1650 (2012).
  • [15] S. Koziel and S. Ogurtsov, Antenna Design by Simulation-Driven Optimization, Springer, Berlin, 2014.
  • [16] S. Koulouridis, D. Psychoudakis, and J. Volakis, “Multiobjective optimal antenna design based on volumetric material optimization”, IEEE Tran. Antennas Propag. 55, 594–603 (2007).
  • [17] Y. Kuwahara, “Multiobjective optimization design of Yagi–Uda antenna”, IEEE Tran. Antennas Propag. 53, 1984–1992 (2005).
  • [18] M. John and M.J. Ammann, “Antenna optimization with a computationally efficient multiobjective evolutionary algorithm”, IEEE Tran. Antennas Propag. 57, 260–263 (2007).
  • [19] T. Maruyama, K. Yamamori, and Y. Kuwahara, “Design of multibeam dielectric lens antennas by multiobjective optimization”, IEEE Tran. Antennas Propag. 57, 57–63 (2007).
  • [20] N. Jin and Y. Rahmat-Samii, “Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations”, IEEE Tran. Antennas Propag. 55, 556–567 (2007).
  • [21] B. Aljibouri, E.G. Lim, H. Evans, and A. Sambell, “Multiobjective genetic algorithm approach for a dual-feed circular polarised patch antenna design”, Electronic Letters 36, 1005–1006 (2000).
  • [22] S. Chamaani, M.S. Abrishamian, and S.A. Mirtaheri, “Time-domain design of UWB Vivaldi antenna array using multiobjective particle swarm optimization”, IEEE Antennas and Wireless Prop. Lett. 9, 666–669 (2010).
  • [23] H. Choo, R.L. Rogers, and H. Ling, “Design of electrically small wire antennas using a pareto genetic algorithm”, IEEE Trans. Antennas Prop. 53, 1038–1046 (2005).
  • [24] S. Koziel and S. Ogurtsov, “Multi-objective design of antennas using variable-fidelity simulations and surrogate models”, IEEE Trans. Antennas Prop. 61, 5931–5939 (2013).
  • [25] S. Koziel, A. Bekasiewicz, I. Couckuyt, and T. Dhaene, “Efficient multi-objective simulation-driven antenna design using Co-kriging”, IEEE Tran. Antennas Propag. 62, 5900–5905 (2014).
  • [26] M.C. Kennedy and A. O’Hagan, “Predicting the output from complex computer code when fast approximations are available”, Biometrika 87, 1–13 (2000).
  • [27] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, New York, 2001.
  • [28] S. Koziel, and S. Ogurtsov, “Model management for cost-efficient surrogate-based optimization of antennas using variable-fidelity electromagnetic simulations”, IET Microwaves Antennas Prop. 6, 1643–1650 (2012).
  • [29] T.W. Simpson, J. Peplinski, P.N. Koch, and J.K. Allen, “Meta-models for computer-based engineering design: survey and recommendations”, Engineering with Computers 17, 129–150 (2001).
  • [30] A.I. Forrester, A. Sobester, and A.J. Keane, “Multi-fidelity optimization via surrogate modelling”, Proc. Royal Society 463, 3251–3269 (2007).
  • [31] B. Beachkofski and R. Grandhi, “Improved distributed hypercube sampling”, American Institute of Aeronautics and Astronautics AIAA 2002, 1274 (2002).
  • [32] A. Bekasiewicz, S. Koziel, and W. Zieniutycz, “Design space reduction for expedited multi-objective design optimization of antennas in highly-dimensional spaces”, in Solving Computationally Extensive Engineering Problems: Methods and Applications, Springer, Berlin, 2014.
  • [33] S. Koziel, A. Bekasiewicz, and W. Zieniutycz, “Expedite EM-driven multi-objective antenna design in highly-dimensional parameter spaces”, IEEE Antennas and Wireless Propagation Letters 13, 631–634 (2014).
  • [34] A. Bekasiewicz, S. Koziel, and L. Leifsson, “Low-cost EM-simulation-driven multi-objective optimization of antennas”, Int. Conf. Computational Science, in Procedia Computer Science 29, 790–799 (2014).
  • [35] S. Koziel, Q.S. Cheng, and J.W. Bandler, “Space mapping”, IEEE Microwave Magazine 9, 105–122 (2008).
  • [36] Y. Qian, W.R. Deal, N. Kaneda, and T. Itoh, “Microstrip-fed quasi-Yagi antenna with broadband characteristics”, Electronics Letters 34, 2194-2196 (1998).
  • [37] J. Kwiecien and B. Filipowicz, “Comparison of firefly and cockroach algorithms in selected discrete and combinatorial problems”, Bull. Pol. Ac.: Tech. 62 (4), 797–804 (2014).
  • [38] T. Lewinski, S. Czarnecki, G. Dzierzanowski, and T. Sokol, “Topology optimization in structural mechanics”, Bull. Pol. Ac.: Tech. 61 (1), 23–37 (2013).
  • [39] B. Blachowski and W. Gutkowski, “Graph based discrete optimization in structural dynamics”, Bull. Pol. Ac.: Tech. 62 (1), 91–102 (2014).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc1f54fd-5851-459a-a9bf-429c392143f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.