PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Od modelowania molekularnego po nanotechnologię i czystą energię

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
From molecular modelling to nanotechnology and clean energy
Języki publikacji
PL EN
Abstrakty
PL
W dobie ogromnego rozwoju przemysłu i gospodarki oraz katastroficznego widma wyczerpania się surowców kopalnych jako źródeł energii, istotne jest znalezienie alternatywnych źródeł pozyskiwania oraz magazynowania energii. Nanorurki węglowe, grafeny i fulereny stały się najbardziej obiecującymi materiałami XXI w. Ponadto, przewodzące materiały polimerowe mogą być wykorzystane do konwersji energii słonecznej na energię elektryczną. Modelowanie molekularne pozwala na dokładne przewidywanie właściwości fizyko-chemicznych związków chemicznych i materiałów o potencjalnym zastosowaniu w nowoczesnej energetyce (m.in. karbazoli, nanorurek węglowych, grafenów i fulerenów). W pracy przedstawiono zastosowanie modelowania molekularnego do przewidywania parametrów strukturalnych spektroskopowych.
EN
In the times of worldwide energetic crisis and catastrophic threat of depletion of fossil resources as energy source, it is important to find new alternative energy sources and methods for energy storage. Carbon nanotubes, graphenes and fullerenes have become most promising materials of 21st century. Moreover, conductive polymer materials might be use for conversion of solar energy to electricity. Molecular modelling allows to precisely predict physical and chemical properties of chemical compounds and materials that might be potentially applied in modern power industry (i.a. carbazoles, carbon nanotubes, graphenes and fullerenes). The article presents examples of molecular modelling application for prediction of spectroscopic parameters.
Czasopismo
Rocznik
Strony
288--295
Opis fizyczny
Bibliogr. 54 poz., rys.
Twórcy
autor
  • Wydział Chemii, Uniwersytet Opolski, Opole; Leszek STOBIŃSKI – Instytut Chemii Fizycznej PAN, Warszawa
autor
  • Wydział Chemii, Uniwersytet Opolski, Opole; Leszek STOBIŃSKI – Instytut Chemii Fizycznej PAN, Warszawa
autor
  • Wydział Chemii, Uniwersytet Opolski, Opole; Leszek STOBIŃSKI – Instytut Chemii Fizycznej PAN, Warszawa
  • Wydział Chemii, Uniwersytet Opolski, Opole; Leszek STOBIŃSKI – Instytut Chemii Fizycznej PAN, Warszawa
  • Instytut Chemii Fizycznej PAN, Warszawa
autor
  • Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
Bibliografia
  • 1. Dresselhaus, M. S., Dresselhaus, G.,Jorio, A.: Raman spectroscopy of carbon nanotubes in 1997 and 2007, J. Phys. Chem. C 2007, 111, 17887–17893.
  • 2. Iijima, S.: Helical microtubules of graphitic carbon, Nature 1991, 354, 56–58.
  • 3. Saito, R., Dresselhaus, M. S.,Dresselhaus, G.: Physical Properties of Carbon Nanotubes, Imperial College Press 1998,
  • 4. Engtrakul, C., Davies, M. F., Mistry, K., Larsen, B. A., Dillon, A. C., Heben, M. J.,Blackburn, J. L.: Solid-State 13C NMR Assignment of Carbon Resonances on Metallic and Semiconducting Single-Walled Carbon Nanotubes, J. Amer. Chem. Soc. 2010, 132, 9956–9957.
  • 5. Kitaygorodskiy, A., Wang, W., Xie, X.-Y., Lin, Y.-Y., Shiral Fernando, K. A., Wang., X., Qu, L., Chen, B.,Sun, Y.-P.: NMR Detection of Single-Walled Carbon Nanotubes in Solution, J. Amer. Chem. Soc. 2005, 127, 7517–7520.
  • 6. Hayashi, S., Hoshi, F., Ishikura, T., Yumura, M.,Ohshima, S.: 13C NMR study of 13C-enriched single-wall carbon nanotubes synthesized by catalytic decomposition of methane, Carbon 2003, 41, 3047–3056.
  • 7. Saunders, M., Jimenez-Vazquez, H. A., Bangerter, B. W., Cross, R. J., Mroczkowski, S., Freedberg, D. I.,Anet, F. A. L.: 3He NMR, a Powerful New Tool for Following Fullerene Chemistry., J. Am. Chem. Soc. 1994, 116, 3621.
  • 8. Saunders, M., Cross, R. J., Jiménez-Vázquez, H. A., Shimshi, R.,Khong, A.: Noble gas atoms inside fullerenes, Science 1996, 271, 1693–1697.
  • 9. Blouin, N., Michaud, A.,Leclerc, M.: A Low-Bandgap Poly(2,7-Carbazole) Derivative for Use in High-Performance Solar Cells, Adv. Mater. 2007, 19, 2295–2300.
  • 10. Blouin, N., Michaud, A.,Leclerc, M.: A Low-Bandgap Poly(2,7-Carbazole) Derivative for Use in High-Performance Solar Cells, Adv. Mater. 2007, 19 2295–2300.
  • 11. Lee, W., Cho, N., Kwon, J., Ko, J.,Hong, J.-I.: New Organic Dye Based on a 3,6-Disubstituted Carbazole Donor for Efficient Dye-Sensitized Solar Cells, Chem. Asian J. 2012, 7 343–350.
  • 12. Lee, W., Cho, N., Kwon, J., Ko, J.,Hong, J.-I.: New Organic Dye Based on a 3,6-Disubstituted Carbazole Donor for Efficient Dye-Sensitized Solar Cells, Chem. Asian J. 2012, 7, 343–350.
  • 13. Wang G, Qian S, Xu J, Wang W, Liu X, Lu X,F., L.: Enhanced photovoltaic response of PVK/C60 composite films, Physica B, 2000, 279, 116.
  • 14. Meerholz, K., Volodin, L. B., Sandalphon, Kippelen, B.,Peyghambarian, N.: A photorefractive polymer with high optical gain and diffraction efficiency near 100%, Nature 1994, 71, 497.
  • 15. Zhao, Y.,Truhlar, D. G.: MN-GFM: Minnesota Gaussian Functional Module, version 3.0, U niversity of Minnesota 2006,
  • 16. Zhao, Y.,Truhlar, D. G.: Comparative DFT study of van der Waals complexes: Rare-gas dimers, alkaline-earth dimers, zinc dimer and zinc-rare-gas dimers, J. Phys. Chem. 2006, 110, 5121–5129.
  • 17. Zhao, Y.,Truhlar, D. G.: Improved description of nuclear magnetic resonance chemical shielding constants using the M06-L meta-generalizedgradient-approximation density functional, J. Phys. Chem. A 2008, 112, 6794–6799.
  • 18. Kupka, T., Stachów, M., Nieradka, M., Kaminský, J.,Pluta, T.: Convergence of nuclear magnetic shieldings in the Kohn-Sham limit for several small molecules, J. Chem. Theor. Comput. 2010, 6, 1580–1589.
  • 19. Kupka, T., Nieradka, M., Stachów, M., Pluta, T., Nowak, P., Kjear, H., Kongsted, J., Kaminský, J.: Basis set convergence of indirect spin-spin coupling constants in the Kohn-Sham limit for several small Molecules, J. Phys. Chem. A 2012, 116, 3728–3738.
  • 20. Harding, M. E., Lenhart, M., Auer, A. A.,Gauss, J.: Quantitative prediction of gas-phase 19F nuclear magnetic shielding constants, J. Chem. Phys. 2008, 128, art. no. 244111–244110.
  • 21. Gauss, J.,Stanton, J. F.: Gauge-invariant calculation of nuclear magnetic shielding constants at the coupled-cluster singles and doubles level, J. Chem. Phys. 1995, 102, 251–253.
  • 22. Gauss, J.: Calculation of NMR chemical shifts at second-order many-body perturbation theory using gauge-including atomic orbitals, Chem. Phys. Lett. 1992, 191, 614–620.
  • 23. Auer, A., Gauss, J.,Stanton, J. F.: Quantitative prediction of gas-phase 13C nuclear magnetic shielding constants, J. Chem. Phys. 2003, 118, 10407–10417.
  • 24. Auer, A. A.: High-level ab-initio calculation of gas-phase NMR chemical shifts and secondary isotope effects of methanol, Chem. Phys. Lett. 2008, 467, 230–232.
  • 25. Frisch, M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota,
  • R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J.B. Foresman, J. V. Ortiz, J. Cioslowski,Fox, D. J.: Gaussian 09, Revision A.02, Gaussian, Inc. 2009,
  • 26. Baerends , E. J., te Velde, B., Rauk, A.,Ziegler, T.: ADF2000Amsterdam Density Functional (ADF) Program, version 2.0.3, Vrije U niversiteit 1997, program documentation available at http://www.scm.com.
  • 27. Kohn, W.,Sham, L. J.: Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 1965, 140, A1133-A1138.
  • 28. Becke, A. D.: Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 1993, 98, 5648–5652.
  • 29. Adamo, C.,Barone, V.: Toward reliable density functional methods without adjustable parameters: The PBE0 model, J. Chem. Phys. 1999, 110 6158–6169.
  • 30. Becke, A. D.: A new mixing of Hartree-Fock and local density-functional theories, J. Chem. Phys. 1993, 98, 1372–1377.
  • 31. Van Voorhis, T.,Scuseria, G. E.: A novel form for the exchange-correlation energy functional, J. Chem. Phys. 1998, 109, 400–410.
  • 32. Kupka, T., Stachów, M., Chełmecka, E., Pasterny, K., Stobińska, M., Stobiński, L., Kaminský, J.: Efficient modeling of NMR parameters in carbon nanosystems, J. Chem. Theor. Comput. 2013, 9, 4275–4286.
  • 33. Standara, S., Kulhánek, P., Marek, R.,Straka, M.: 129Xe NMR chemical shift in Xe@C60 calcula ted at experimental conditions: Essential role of the relativity, dynamics, and explicit solvent, J. Comput. Chem. 2013, 34, 1890–1898.
  • 34. Stepanek, P., Bour, P.,Straka, M.: Assignment of the He@C84 isomers in experimental NMR spectra using density functional calculations, Chem. Phys. Lett. 2010, 500, 54–58.
  • 35. Kupka, T., Stachów, M., Nieradka, M.,Stobiński, L.: DFT calculation of structures and NMR chemical shifts of simple models of small diameter zigzag single wall carbon nanotubes (SWCNTs), Magn. Reson. Chem. 2011, 49, 549–557.
  • 36. Voronkov, E., Rossikhin, V., Okovytyy, S., Shatckih, A., Bolshakov, V.,Leszczynski, J.: Novel physically adapted STO ##-3G basis sets. Efficiency for prediction of second-order electric and magnetic properties of aromatic hydrocarbons, I. J. Quantum Chem. 2012, 112, 2444–2449.
  • 37. Jensen, F.: Basis set convergence of nuclear magnetic shielding constants calculated by density functional methods, J. Chem. Theor. Comput 2008,4, 719–727.
  • 38. Helgaker, T., Klopper, W., Koch, H.,Noga, J.: Basis-set convergence of correlated calculations on water, J. Chem. Phys. 1997, 106, 9639 – 9646.
  • 39. Kupka, T., Ruscic, B.,Botto, R. E.: „Toward Hartree-Fock- and Density Functional Complete Basis-Set Predicted NMR Parameters”, J. Phys. Chem. A. 2002, 106, 10396–10407.
  • 40. Kupka, T., Nieradka, M., Kaminský, J.,Stobiński, L.: Modeling 21Ne NMR parameters for carbon nanosystems, Magn. Reson. Chem. 2013, 51, DOI 10.1002/mrc.3999.
  • 41. Kupka, T., Stachów, M., Stobiński, L., Kaminský, J.: 3He NMR: From free gas to its encapsulation in fullerene, Magn. Reson. Chem. 2013, 51, 463–468.
  • 42. Gauss, J.,Stanton, J. F.: Perturbative treatment of triple excitations in coupled-cluster calculations of nuclear magnetic shielding constants, J. Chem. Phys. 1996, 104, 2574–2583.
  • 43. Chang, C., Pelissier, M.,Durand, P.: Regular two-component Paulilike effective Hamiltonians in Dirac Theory., Physica Scripta 1986, 34, 394–404.
  • 44. Jensen, F.: The basis set convergence of spin-spin coupling constants calculated by density functional methods, J. Chem. Theor. Comput. 2006, 2, 1360–1369.
  • 45. Buczek, A., Kupka, T.,Broda, M. A.: Extrapolation of water and formaldehyde harmonic and anharmonic frequencies to the B3LYP/CBS limit using polarization consistent basis sets, J. Mol. Model. 2011, 17, 2029–2040.
  • 46. Buczek, A., Kupka, T.,Broda, M. A.: Estimation of formamide harmonic and anharmonic modes in the Kohn-Sham limit using the polarization consistent basis sets, J. Mol. Model. 2011, 17, 2265–2274.
  • 47. Buczek, A., Kupka, T., Sauer, S. P. A.,Broda, M. A.: Estimating the carbonyl anharmonic vibrational frequency from affordable harmonic frequency calculations, J. Mol. Model. 2012, 18, 2471–2478.
  • 48. Kupka, T.: Convergence of H2O, H2, HF, F2 and F2O nuclear magnetic shielding constants and indirect nuclear spin-spin coupling constants (SSCCs) using segmented contracted basis sets XZP, polarization-consistent pcS-n and pcJ-n basis sets and BHandH hybrid density functional, Magn. Reson. Chem. 2009, 47, 959–970.
  • 49. Ditchfield, R.: Self-consistent perturbation theory of diamagnetism I. A gauge-invariant LCAO method for N.M.R. chemical shifts, Mol. Phys. 1974, 27, 789–807.
  • 50. Wolinski, K., Hinton, J. F.,Pulay, P.: Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations, J. Am. Chem. Soc. 1990, 112, 8251–8260.
  • 51. Ci, L., Zhou, Z., Tang, D., Yan, X., Liang, Y., Liu, D., Yuan, H., Zhou, W., Wang, G.,Xie, S.: Double wall carbon nanotubes with an inner diameter of 0.4 nm, Chem. Vap. Deposition 2003, 9, 119–121.
  • 52. Jensen, F.: Polarization consistent basis sets. III. The importance of diffuse functions, J. Chem. Phys. 2002, 117, 9234–9240.
  • 53. T. Kupka, Nieradka, M., Kaminský, J.,Stobiński, L.: Modeling 21Ne NMR parameters for carbon nanosystems, Magn. Reson. Chem. 2013, 51, 676–681.
  • 54. Syamala, M. S., Cross, R. J.,Saunders, M.: 129Xe NMR Spectrum of Xenon Inside C60, J. Am. Chem. Soc. 2002, 124, 6216–6219.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc1ef9b8-290a-4b66-bb97-0c0a5aeb3b43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.