PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of matrix modification of sandwich composite on selected strength propertises

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Improvements in materials and the availability of apparatus enabling mechanical, strength, thermal testing of sandwich structures, including fatigue tests, allow for a dynamic development of research work confirming the effectiveness of the use of structural composites as energy-intensive structures. This paper presents the results of selected strength tests of a layered epoxy-glass composite with a polyurethane-modified matrix and a porous core. The conducted experimental studies were proposed as a basis for the creation of a test procedure for comprehensive strength and mechanical characterisation of the composite. Obtaining a layered material with a modified matrix is a formative factor for impact energy absorption properties. The quantitative and qualitative effects of material selection and matrix modification on impact properties were characterised, and an analysis of composite damage and component interaction under loads occurring during the proposed experimental tests was carried out.
Twórcy
  • Polish Air Force University, Faculty of Aviation, ul. Dywizjonu 303 35, 08-530 Dęblin, Poland
  • Polish Air Force University, Faculty of Aviation, ul. Dywizjonu 303 35, 08-530 Dęblin, Poland
  • Polish Air Force University, Faculty of Aviation, ul. Dywizjonu 303 35, 08-530 Dęblin, Poland
  • Casimir Pulaski Radom University, Faculty of Applied Chemistry, ul. Chrobrego 27, 26-600 Radom, Poland
Bibliografia
  • 1. Ochelski S. Doświadczalna ocena zdolności pochłaniania energii kompozytów węglowo-epoksydowych i szklano-epoksydowych. Biuletyn Wojskowej Akademii Technicznej, 2007; 56(1): 143–158.
  • 2. Costa S. Physically based fibre kinking model for crash of composites, thesis for the degree of licentiate of engineering in solid and structural mechanics department of applied mechanics, Chalmers University Of Technology, Gothenburg, Sweden, 2016.
  • 3. Pawłowski P. Systemy adaptacyjnej absorpcji obciążeń udarowych. Rozprawa doktorska. Instytut Podstawowych Problemów Techniki PAN, Warszawa 2011.
  • 4. Boczkowska A., Krzesiński G. Kompozyty i techniki ich wytwarzania. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2016.
  • 5. Polimeno U, Meo M. Detecting barely visible impact damage detection on aircraft composites structures. Composite structures, 2009; 91(4): 398–402. https://doi.org/10.1016/j.measurement.2022.111194.
  • 6. Fiore V, Valenza A. Epoxy resins as a matrix material in advanced fiber-reinforced polymer (FRP) composites, advanced fibre-reinforced polymer (FRP) composites for structural applications. Woodhead Publishing Series in Civil and Structural Engineering, 2013; 88–121. https://doi.org/10.1533/9780857098641.1.88.
  • 7. Frigione M.E. Oligomeric and polymeric modifiers for toughening of epoxy resins. European Polymer Journal, 1995; 31(11): 1021–1029. https://doi.org/10.1016/0014-3057(95)00091-7.
  • 8. Jansen B.J.P. Preparation of thermoset rubbery epoxy particles as novel toughening modifiers for glassy epoxy resins. Polymer, 1999; 40(20): 5601–5607. https://doi.org/10.1016/S0032-3861(98)00774-5.
  • 9. Ben Saleh A.B. Synthesis and Characterization of Liquid Natural Rubber as Impact Modifier for Epoxy Resin. Physics Procedia, 2014; 55: 129–137. https://doi.org/10.1016/j.phpro.2014.07.019.
  • 10. Jagtap S.B. Nanocomposites based on epoxy resin and organoclay functionalized with a reactive modifier having structural similarity with the curing agent. Polymer, 2015; 63: 41–51. https://doi.org/10.1016/j.polymer.2015.02.038.
  • 11. Foix D. New pegylated hyperbranched polyester as chemical modifier of epoxy resins in UV cationic photocuring. Reactive and Functional Polymers, 2011; 71(4): 417–424. https://doi.org/10.1016/j.reactfunctpolym.2010.12.014.
  • 12. Tan J. Hydrophobic epoxy resins modified by low concentrations of comb-shaped fluorinated reactive modifier. Progress in Organic Coatings, 2017; 105: 353–361. https://doi.org/10.1016/j.porgcoat.2017.01.018.
  • 13. Zhang Z. A laboratory study of epoxy/polyurethane modified asphalt binders and mixtures suitable for flexible bridge deck pavement. Construction and Building Materials, 2021; 274: 122084. https://doi.org/10.1016/j.conbuildmat.2020.122084.
  • 14. Zhou L. Synergetic effect of epoxy resin and carboxylated nitrile rubber on tribological and mechanical properties of soft paper-based friction materials. Tribology International, 2019; 129: 314–322. https://doi.org/10.1016/j.triboint.2018.08.020.
  • 15. Ramos V.D. Modification of epoxy resin: a comparison of different types of elastomer. Polymer Testing, 2005; 24: 387–394. https://doi.org/10.1016/j.polymertesting.2004.09.010.
  • 16. Kostrzewa M. Effect of polyurethane type on mechanical properties of composites based on epoxy resin with IPN structure. Przetwórstwo Tworzyw, 2015; 2: 131–134.
  • 17. Tarlochan F. Sandwich Structures for Energy Absorption Applications: A Review. Materials, 2021; 4731. https://doi.org/10.3390/ma14164731.
  • 18. [Online: 20.03.2025]: https://tvv-journal.upol.cz/pdfs/tvv/2012/01/53.pdf
  • 19. Ochelski S. Metody doświadczalne mechaniki kompozytów konstrukcyjnych. Wydawnictwo PWN, Warszawa, 2018.
  • 20. Galdino Jr.F, Gomes da Silva R. Development of a machine per drop weight impact for composite materials. Conference: 22nd International Congress of Mechanical Engineering, Brazil, 2013.
  • 21. [Online:20.03.2025]: https://encyklopedia.pwn.pl/haslo/udarnosc;3990794.html
  • 22. Safri S.N.A. Low Velocity and high velocity impact test on composite materials – A review. The International Journal of Engineering and Science, 2014; 3(9): 50–60.
  • 23. Barcikowski M. Wpływ materiałów i struktury laminatów poliestrowo-szklanych na ich odporność na udar balistyczny. Zachodniopomorski Uniwersytet Technologiczny, 2012.
  • 24. Al Omari A.S. Experimental and computational analysis of low-velocity impact on carbon-, glass- and mixed-fiber composite plates. Journal of Composite Science, 2020; 4(4): 148. https://doi.org/10.3390/jcs4040148.
  • 25. Baran I. Residual bending behaviour of sandwich composites after impact. Journal of Sandwich Structures & Materials, 2018; 22. https://doi.org/10.1177/1099636218757164.
  • 26. Betts D. Post-impact residual strength and resilience of sandwich panels with natural fiber composite faces. Journal of Building Engineering, 2021; 38: 102184. https://doi.org/10.1016/j.jobe.2021.102184.
  • 27. Operating Manual DMA 242 E, NETZSCH-Gerätebau GmbH, 2019.
  • 28. Esnaola A. Effect of the manufacturing process on the energy absorption capability of GFRP crush structures. Composite Structures, 2018; 187: 316–324. https://doi.org/10.1016/j.compstruct.2017.12.079.
  • 29. Roszowska-Jarosz M. Mechanical properties of bio-composites based on epoxy resin and nanocellulose fibres. Materials, 2021; 14(13): 3576. https://doi.org/10.3390/ma14133576.
  • 30. Polish Standard PN-EN ISO 179-1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc1d6b80-eb00-44e9-850d-a1d524d8ecd4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.