PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of GPR and seismic methods for noninvasive examination of glacial and postglacial sediments in the Psia Trawka glade: the Tatra Mts., Poland

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Presented study gives an insight into general proportions of the actual geomorphology, subglacial morphology and thickness of the drift (quaternary sediments) particularly well-pronounced glacial morphology in the Tatras and, on the other hand, the general scarcity of the data in this field. Objectives of the geophysical survey in this study were imaging of the morphology of bedrock surface under the drift (glacial and postglacial) sediments and determination of thickness of the drift and its composition. Two methods were applied: Ground Penetrating Radar (GPR) and seismic refraction profiling. GPR was used to examine drift sediments due to its high resolution and low depth of penetration. Seismic method with lower resolution but higher penetration depth gave an image of boundary between bedrock and drift. In addition, the results of seismic tomography allowed the velocity field imaging which shows changes inside the postglacial deposits. The results of the two methods used in this research suggest that points of depression exist in the subglacial morphology with a depth of about c.a. 40 below the present-day terrain surface and c.a. 25 m below surrounding subglacial surface. This trough has also been estimated to be about 150 m wide. Its considerable depth and steep slopes show that its origin can be related to erosion of subglacial water during the decay of the last (Würm) glaciation of the Sucha Woda and Panszczyca valleys.
Czasopismo
Rocznik
Strony
1777--1789
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
  • Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30 Ave., 30‑059 Kraków, Poland
  • Division of Geodesy, Geophysics and Engineering Geology, Department of Geotechnics, Faculty of Environmental Engineering, Cracow University of Technology, Warszawska 24, 31‑155 Kraków, Poland
autor
  • Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30 Ave., 30‑059 Kraków, Poland
  • Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30 Ave., 30‑059 Kraków, Poland
Bibliografia
  • 1. Akinsunmade A, Karczewski J, Pysz P, Tomecka-Suchoń S, Uhl T (2019) Identification of heavy machines impact on soil using ground penetrating radar. In: Uhl T (ed) Advances in mechanism and machine science. IFToMM WC 2019. Mechanisms and machine science, vol 73. Springer, Cham, pp 3741–3748
  • 2. Annan AP (1999) Practical processing of GPR data. Sensor and Software Inc., Canada
  • 3. Annan AP (2001) Ground penetrating radar—workshop notes. Sensor and Soft-ware Inc., Canada
  • 4. Baumgart-Kotarba M, Kotarba A (2001) Deglaciation in the Sucha Woda and Panszczyca Valleys in the polish high Tatras. Studia Geomorphol Carpato-Balc 35:7–38
  • 5. Baumgart-Kotarba M, Kotarba A, Dec J, Ślusarczyk R (2003) Geomorfologiczne poznanie Tatr w świetle badań geofizycznych. Prz Geogr 75(4):509–524
  • 6. Baumgart-Kotarba M, Dec J, Kotarba A, Ślusarczyk R (2008) Glacial trough and sediments infill of the Biała Woda Valley (the High Tatra Mts) using geo-physical and geomorphological methods. Studia Geomorphol Carpa-tho Balc 42:75–108
  • 7. Bohidar RN, Hermance JF (2002) The GPR refraction method. Geophysics 67(5):1474–1485
  • 8. Dec J (2004) Seismic survey to evaluate the danger of ground surface damage in built-up terrain in mining areas. Pol J Environ Studies 13:70–73
  • 9. Jarzyna JA, Dec J, Karczewski J, Porzucek S, Tomecka-Suchoń S, Wojas A, Ziętek J (2012) Geophysics in near-surface investigations. In: Hwee-San L (ed) New achievements in geoscience. InTech, pp 46–80. https://doi.org/10.5772/37067. ISBN: 978-953-51-0263-2
  • 10. GISCO. http://www.giscogeo.com/products-equipment/seismic-sources/ess200-ess500. Accessed 27 Feb 2019
  • 11. Gołębiowski T, Juliszewski T, Kiełbasa P, Tomecka-Suchoń S, Uhl T (2019) Recent advancement approach for precision agriculture. In: Uhl T (ed) Advances in mechanism and machine science. IFToMM WC 2019. Mechanisms and machine science, vol 73. Springer, Cham, pp 2907–2916
  • 12. Harba P, Pilecki Z (2017) Assessment of time-spatial changes of shear wave veloci-ties of flysch formation prone to mass movements by seismic interferome-try with the use of ambient noise. Landslides 14:1225–1233. https://doi.org/10.1007/s10346-016-0779-2
  • 13. Klimaszewski M (1960) On the influence of preglacial relief on the extension and development of glaciation of mountainous regions. Przegl Geogr 32(suppl.):41–49
  • 14. Lankston RW (1986) High resolution refraction data acquisition and interpretation. ftp://geom.geometrics.com/pub/seismic/Literature/S-TR102_old.pdf. Accessed 27 Feb 2019
  • 15. Lanz E, Maurer H, Green AG (1998) Refraction tomography over a buried waste disposal site. Geophysics 63(4):1414–1433
  • 16. Magiera T, Żogała B, Szuszkiewicz M, Pierwoła J, Szuszkiewicz MM (2019) Combination of different geophysical techniques for the location of historical waste in the Izery Mountains (SW Poland). Sci Total Environ 682:226–238
  • 17. Mala (2003) Basic and advanced radar theory. MALA GeoScience AB, Mala
  • 18. Marcak H, Gołębiowski T, Tomecka-Suchoń S (2005) Detection of hydrocarbon contamination in the ground using GPR method. In: Near surface 2005-11th European meeting of environmental and engineering geophysics
  • 19. Marcak H, Tomecka-Suchoń S, Czarny R, Pysz P, Akinsunmade A, Kril T (2018) GPR ground-wave parameters changes due to variation of soil moisture. In: E3S web of conferences 66(01003) EDP sciences
  • 20. Ohioma JO, Ezomo FO, Akinsunmade A (2017) Delineation of hydrothermally altered zones that favour gold mineralization in Isanlu Area, Nigeria using aeroradiometric data. Int Ann Sci 2(1):20–27. https://doi.org/10.21467/ias.2.1.20-27
  • 21. Palmer D (1981) The generalized reciprocal method of seismic refraction inter-pretation. Geophysics 46(11):1508–1518
  • 22. Pilecki Z, Isakow Z, Czarny R, Pilecka E, Harba P, Barnaś M (2017) Capabili-ties of seismic and georadar 2D/3D imaging of shallow subsurface of transport route using the Seismobile system. J Appl Geophys 143:31–41. https://doi.org/10.1016/j.jappgeo.2017.05.016
  • 23. Piotrowska K (ed) (2007) Detailed geological map of the Tatras 1:10 000, sheet Zakopane-Toporowa Cyrhla. Polish Geological Institute. https://cbdgportal.pgi.gov.pl/smgt. Accessed 27 Feb 2019
  • 24. ReflexW (2016) Manual of ReflexW computer program. SandmeierGeo firm, Karls-ruhe
  • 25. Sobotka J, Farbisz-Michałek M (2016) A geological interpretation of geophysical self-potential anomalies in the Radzimowice Ore District, Sudetes, South-Western Poland. Geol Geophys Environ 42(4):475–486
  • 26. Tomecka-Suchoń S (2012) Georadar studies on St. Benedict’s Church on Lasota Hill, Kraków, Poland. Acta Geophys 60(2):386–398
  • 27. Tomecka-Suchoń S, Gołębiowski T (2010) Using of GPR method for examination of postglacial deposits in the Alp of Ornak (the Tatra Mountains). In: Proceedings of 19th congress of the Carpathian-Balkan Geological Associa-tion, vol 39(1–2), p 394
  • 28. Tomecka-Suchoń S, Gołębiowski T (2011) Feasibility analysis of using GPR method for the examination of postglacial deposits in mountainous geo-logical environment. Geology 37(3):375–382
  • 29. Tomecka-Suchoń S, Marcak H (2015) Interpretation of ground penetrating radar attributes in identifying the risk of mining subsidence. Arch Min Sci 60(2):645–656
  • 30. Tomecka-Suchoń S, Żogała B, Gołębiowski T, Dzik G, Dzik T, Jochymczyk K (2017) Application of electrical and electromagnetic methods to study sedimentary covers in high mountain areas. Acta Geophys 65(4):743–755
  • 31. White DJ (1989) Two-dimensional seismic refraction tomography. Geophys J Int 97:223–245
  • 32. Wu Z, Liu S (2012) Imaging the debris internal structure and estimating the effect of debris layer on ablation of Glacier ice. J Geol Soc India 80(6):825–835
  • 33. Zasadni J, Kłapyta P (2016) From valley to marginal glaciation in alpine-type relief: lateglacial glacier advances in the Pięć Stawów Polskich/Roztoka Valley, High Tatra Mountains, Poland. Geomorphology 253:406–424
  • 34. Zhang J, Brink US, Toksoz MN (1998) Nonlinear refraction and reflection travel time tomography. J Geophys Res 103(B12):29743–29757
  • 35. Żogała B, Dubiel R, Dzik T, Dzik G, Mendecki M (2010) Application of geophysical methods form recognising of rock debris in the Tatra Mountains. In: Kotarba A (ed) Science and management of the Tatra Mountains and their vanity. Part 1—earth sciences. TPN–PTPNoZ Org., Cracow, pp 165–171
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc1d3de2-7f91-41be-960a-2498311f090b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.