PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigation of heat transfer and aerodynamic drag of novel heat sinks with lamellar fins

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heat transfer and aerodynamic drag of novel small-sized heat sinks with lamellar fins, designed for electronic cooling, were experimentally investigated under conditions of forced convection in the range of Reynolds numbers 1 250-10 500. It was found that a gradual reduction in the fin spacing from 6 mm to 3 mm with a 29° angle of taper between the outermost fins leads to an increase in the heat transfer intensity by 15-32% with a significant increase in aerodynamic drag compared to the surface with a constant fin spacing of 6 mm. Incomplete cross-section cutting of fins at the relative depth of 0.6 in addition to the gradual reduction in the fin spacing provides aerodynamic drag decrease by 520% and increase of heat transfer intensity by 1820% in comparison with the similar heat sink without fins cutting. Proposed novel designs of heat sinks enabled us to decrease by 7°С–16°С the maximum overheating of the heat sink's base in the flow speed range from 2.5 m/s to 7.5 m/s at constant heat load. To ensure a constant value of maximum overheating of the heat sink base the inlet flow velocity for the surface with constant fin spacing should be 1.6-2 times higher than that for the heat sink with 29° taper angle between outermost fins and partially fins cutting. In this case, the aerodynamic drag for the latter will be higher only by 1.6-2.7 times, which is quite acceptable.
Rocznik
Strony
53--63
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
  • National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Educational and Scientific Institute of Atomic and Thermal Energy, 37, Beresteisky Av., Kyiv, 03056, Ukraine
  • National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Educational and Scientific Institute of Atomic and Thermal Energy, 37, Beresteisky Av., Kyiv, 03056, Ukraine
  • National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Educational and Scientific Institute of Atomic and Thermal Energy, 37, Beresteisky Av., Kyiv, 03056, Ukraine
Bibliografia
  • [1] Gurrum, S.P., Suman, S.K., Joshi, Y.K., & Fedorov, A.G. (2004). Thermal Issues in Next-Generation Integrated Circuits. IEEE Transactions on Device and Materials Reliability, 4(4), 709–714.doi: 10.1109/tdmr.2004.840160
  • [2] Jonsson, H., & Moshfegh, B. (2001). Modeling of the thermal and hydraulic performance of plate fin, strip fin, and pin fin heat sinks-influence of flow bypass. IEEE Transactions on Components and Packaging Technologies, 24(2), 142–149. doi:10.1109/6144.926376
  • [3] El-Sayed, S.A., Mohamed, S.M., Abdel-latif, A.M., & Abouda, A..E. (2002). Investigation of turbulent heat transfer and fluid flow in longitudinal rectangular-fin arrays of different geometries and shrouded fin array. Experimental Thermal and Fluid Science, 26(8), 879–900. doi: 10.1016/s0894-1777(02)00159-0
  • [4] Yu, X., Feng, J., Feng, Q., & Wang, Q. (2005). Development of a plate-pin fin heat sink and its performance comparisons with a plate fin heat sink. Applied Thermal Engineering, 25(2–3),173–182. doi: 10.1016/j.applthermaleng.2004.06.016
  • [5] Haghighi, S.S., Goshayeshi, H.R., & Safaei, M.R. (2018). Natural convection heat transfer enhancement in new designs of plate-fin based heat sinks. International Journal of Heat and Mass Transfer, 125, 640–647. doi: 10.1016/j.ijheatmasstransfer.2018.04.122
  • [6] Lekaphol, T., Sompong, P., & Srisomporn, S. (2019). Optimal height ratio of Y-shape pin fin to plate fin of PPFHS. IOP Conference Series: Materials Science and Engineering, 501, 012062. doi: 10.1088/1757-899x/501/1/012062
  • [7] Chen, C.H., & Wang, C.C. (2015). A novel trapezoid fin pattern applicable for air-cooled heat sink. Heat and Mass Transfer, 51(11), 1631–1637. doi: 10.1007/s00231-015-1666-4
  • [8] Muneeshwaran, M., Sulaiman, M.W., Hsieh, C.H., Chai, M.L., & Wang, C.C. (2022). Heat transfer augmentation of heat sinks through increasing effective temperature difference. Journal of Enhanced Heat Transfer, 29(5), 3755. doi: 10.1615/jenhheattransf.2022042106
  • [9] Chingulpitak, S., Chimres, N., Nilpueng, K., & Wongwises, S. (2016). Experimental and numerical investigations of heat transfer and flow characteristics of cross-cut heat sinks. International Journal of Heat and Mass Transfer, 102, 142–153. doi:10.1016/j.ijheatmasstransfer.2016.05.098
  • [10] Feng, L., Du, X., Yang, Y., & Yang, L. (2011). Study on heat transfer enhancement of discontinuous short wave finned flat tube. Science China Technological Sciences, 54(12), 3281–3288. doi: 10.1007/s11431-011-4572-0
  • [11] Dhaiban, H.T., Hussein, M.A. (2019). The optimal design of heat sinks: A Review. Journal of Applied and Computational Mechanics 6(4), 10301043. doi: 10.22055/JACM.2019.14852
  • [12] Pismenniy, Ye.N., Burley, V.D., Terekh, A.M., Baranyuk, A.V., Tsvyashchenko, Ye.V. (2005). Heat transfer of flat-plating surfaces with cut fins at force convection. Promyshlennaya teplotekhnika, 27(4), 11-16 (in Russian).
  • [13] Baranyuk, A.V., Pismenniy, Ye.N., Terekh, A.M., Rohachev, V.A., Burley, V.D. (2006). Aerodynamic drag of flat-plating surfaces with cut fins at force convection. Promyshlennaya teplotekhnika, 28(4), 29-33 (in Russian).
  • [14] Pis'mennyi, E.N., Rogachev, V.A., Terekh, A.M., Polupan, G., Carvajal-Mariscal, I., & Nezym, V. (2006). An experimental study of enhancement of forced convection heat transfer from parallel plate fins with cuts. Annals of the Assembly for International Heat Transfer Conference 13. Begell House Inc. doi:10.1615/ihtc13.p17.220
  • [15] Baranyuk, A.V., Nikolaenko, Y.E., Rohachov, V.A., Terekh, A. M., & Krukovskiy, P.G. (2019). Investigation of the flow structure and heat transfer intensity of surfaces with split plate finning. Thermal Science and Engineering Progress, 11, 28–39. doi: 10.1016/j.tsep.2019.03.018
  • [16] Baranyuk, A.V., Rogachev, V.A., Zhukova, Y.V., Terekh, A.M., & Rudenko, A.I. (2020). Experimental investigation of heat transfer of plane heat-removing surfaces with plate finning. Journal of Engineering Physics and Thermophysics, 93(4), 962–972.doi: 10.1007/s10891-020-02196-3
  • [17] Nikolaenko, Yu., Baranyuk, A., Rohachev, V., & Terekh, A. (2020). Numerical study of heat and aerodynamic drag of the radiator with lamellar split finning. Archives of thermodynamics, 41(1), 67-93. doi: 10.24425/ather.2020.132950
  • [18] Rohachev, V.A., Terekh, O.M., Baranyuk, A.V., Nikolaenko, Y.E., Zhukova, Y.V., & Rudenko, A.I. (2020). Heataerodynamic efficiency of small size heat transfer surfaces for cooling thermally loaded electronic components. Thermal Science and Engineering Progress, 20, 100726. doi: 10.1016/j.tsep.2020.100726
  • [19] Pis'mennyi, E.N., Terekh, A.M., & Rogachev, V. A. (1997). New Heat-Transfer Surfaces Made of Tubes with Rolled Petal Finning. Heat Transfer Research, 28(4-6), 398–401. doi: 10.1615/heattransres.v28.i4-6.270
  • [20] Terekh, A.M., Shapoval, O.E., & Pis’mennyy, E.N. (2001). The average-superficial heat exchange in banks of in-line tubes with split spiral fins in cross-flow. Promyshlennaya teplotekhnika, 23(1-2), 35-41 (in Russian).
  • [21] Shapoval, O.E., Pis’mennyy, E.N., & Terekh, A.M. (2001). Aerodynamic drag of transversely streamlined of in-lined tube bundles with split fins. Promyshlennaya teplotekhnika, 23(4-5),63-68 (in Russian).
  • [22] Pismennyi, E.N., Rohachev, V.A., Terekh, A.M., Burley, V.D., & Razumovskyi, V.G. (2002). Heat transfer of flat surfaces with mesh-and-wire finning at forced convection. Promyshlennaya teplotekhnika, 24(4), 71-78 (in Russian).
  • [23] Pis'mennyi, E.N., Terekh, A.M., Rogachev, V.A., Burlei, V.D., & Rudenko, A.I. (2005). Calculation of Convective Heat Transfer of Plane Surfaces with Wire-Net Finning Immersed in a CrossFlow. Heat Transfer Research, 36(1-2), 39–46. doi:10.1615/heattransres.v36.i12.60
  • [24] Nishchik, A.P., Terekh, A.M., Rudenko, A.I., & Vozniuk, M.M.: Lamellar-finned heat exchange surface. Ukraine utility model patent. UA 140448 U, Feb. 25, 2020 (in Ukrainian).
  • [25] Yudin, V.F. (1982). Heat Transfer in Cross-Finned Tubes. Mashinostroenie, Leningrad (in Russian).
  • [26] Pis’mennyi, E.N., Terekh, A.M. (1993). Generalized method for convective heat transfer calculation in transversely streamed tube bundles with external ring and spiral-strip fins. Teploenergetika, 5, 52-56 (in Russian).
  • [27] Pis’mennyi, E. N. (2016). Study and application of heat-transfer surfaces assembled from partially finned flat-oval tubes. Applied Thermal Engineering, 106, 1075–1087. doi: 10.1016/j.applthermaleng.2016.06.081
  • [28] Pis’mennyi, E. N., Terekh, A. M., Polupan, G. P., CarvajalMariscal, I., & Sanchez-Silva, F. (2014). Universal relations for calculation of the drag of transversely finned tube bundles. International Journal of Heat and Mass Transfer, 73, 293–302. doi:10.1016/j.ijheatmasstransfer.2014.02.013
  • [29] ISO Guide to the Expression of Uncertainty in Measurement. International Organization for Standardization (ISO), Geneva 1993 (Corrected and Reprinted 1995).
  • [30] Taylor, J.R. (1997). Introduction to error analysis, the study of uncertainties in physical measurements. University Science Book, Sausalito.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc18e88f-2cac-45c4-92f3-5b5fa482b22f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.