Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Natural rubber is an important industrial material derived from caoutchouc trees (Hevea Brasiliensis). By chemical composition, it is a polymer material that is mostly cis-1,4-polyisoprene. It falls into the category of elastomers, which enables its wide usage due to its specific characteristics. Polymer materials include plastic, rubber, and glue and are the most important technical materials. Rubbers are used in the production of conveyor belts, shock absorbers, coatings, fenders, engines, and device parts. They are also used in composite materials such as threads, particles, and matrix materials. By analyzing the properties of natural rubber, the subject of the research is defined, i.e., the characterization of natural rubber samples and their connection with macroscopic properties. In accordance with the subject of the research, in this paper, tests are carried out on samples of natural rubber, which are obtained in the form of thin films from latex and cross-linked by gamma radiation. A total dose of 300 kGy is applied to the samples in the state of uniaxial deformation. In this sense, a hypothesis is put forward that involves examining the influence of radiation dose on the morphology of natural rubber samples using scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDX). The investigation aims to emphasize the importance of the method in acquiring a comprehensive characterization of the material samples, which are used both in maritime areas and in other fields of application.
Rocznik
Tom
Strony
15--21
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
- University of Rijeka, Faculty of Maritime Studies 2 Studentska St., 51000 Rijeka, Croatia
Bibliografia
- 1. Billmeyer, F.W. (1984) Textbook of Polymer Science. 3rd Edition. New York: John Wiley & Sons.
- 2. Bokobza, L. (2005) Infrared analysis of elastomeric composites under uniaxial extension. Macromolecular Symposia 220 (1), pp. 45‒60, doi: 10.1002/masy.200550204.
- 3. Čatić, I., Barić, G., Cvjetičanin, N., Galić, K., Godec, D., Grančarić, A.M., Katavić, I., Kovačić, T., Raos, P., Rogić, A., Rujnić-Sokele, M., Vranješ, N., Vrsaljko, D. & Andričić, B. (2010) Polymers – from the primeval beginning to plastics and elastomers. Polimeri 31 (2), pp. 59‒70.
- 4. Esih, I. (2003) Osnove površinske zaštite. Zagreb: FSB.
- 5. Intertek (2023) Energy Dispersive X-Ray Analysis (EDX). [Online]. Available from: https://www.intertek.com/ analysis/microscopy/edx/ [Accessed: April 15, 2024].
- 6. Janović, Z. (1997) Polimerizacija i polimeri. HDKI ‒ Kemija u industriji. Zagreb
- 7. Kendrick, L.H. & Caccese, V. (2005) Development of a cavitation erosion resistant advanced material system. Master Thesis, the University of Maine.
- 8. Miyamoto, Y., Yamao, H. & Sekimoto, K. (2003) Crystallization and melting of polyisoprene rubber under uniaxial deformation. Macromolecules 36 (17), pp. 6462‒6471, doi: 10.1021/ma0342877.
- 9. Pintaric, A. (2009) Inženjerski materijali u elektrotehnici
- 10. Rault, J., Marchal, J., Judeinstein, P. & Albouy, P.A. (2006a) Chain orientation in natural rubber, Part II: 2 H-NMR study. The European Physical Journal E 21 pp. 243‒261, doi: 10.1140/epje/i2006-10064-6.
- 11. Rault, J., Marchal, J., Judeinstein, P. & Albouy, P.A. (2006b) Stress-induced crystallization and reinforcement in filled natural rubbers: 2 H-NMR study. Macromolecules 39 (24), pp. 8356‒8368, doi: 10.1021/ma0608424.
- 12. Roland, C.M. (2005) Structure characterization in the science and technology of elastomers. In: Mark, J.E., Erman, B., Eirich, F.R. (Eds) The Science and Technology of Rubber (Third Edition), pp. 105‒155. Burlington: Elsevier, doi: 10.1016/B978-0-12-464786-2.X5000-7.
- 13. Roslim, R., Jefri, J., Manroshan Singh, J.S., Siti Noor Suzila, M.U.H. & Amir Hashim, Md.Y. (2015) Characterizing physical properties of peroxide vulcanized natural rubber latex films. Advanced Materials Research 1134, pp. 236‒242, doi: 10.4028/www.scientific.net/AMR. 1134.236.
- 14. Sellaro, R., Sarver, E. & Baxter, D. (2015) A standard characterization methodology for respirable coal mine dust using SEM-EDX. Resources 4 (4), pp. 939‒957, doi: 10.3390/resources4040939.
- 15. Thermo Fisher (2023) Polymer Research. Polymer research enabled by electron microscopy techniques. [Online]. Available from: https://www.thermofisher.com/hr/en/home/materials-science/polymers-research.html [Accessed: April 15, 2024].
- 16. Toki, S., Sics, I., Ran, S.F., Liu, L.Z., Hsiao, B.S., Murakami, S., Senoo, K. & Kohjiya, S. (2002) New insights into structural development in natural rubber during uniaxial deformation by in situ synchrotron X-ray diffraction. Macromolecules 35 (17), pp. 6578‒6584, doi: 10.1021/ ma0205921.
- 17. Trabelsi, S., Albouy, P.A. & Rault, J. (2004) Stress-induced crystallization properties of natural and synthetic CIS-polyisoprene. Rubber Chemistry and Technology 77 (2), pp. 303‒316, doi: 10.5254/1.3547825.
- 18. Valić, S., Andreis, M., Veksli, Z. & Charlesby, A. (1991) Matrix inhomogeneity in cross-linked rubber and rubber emulsions. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry 37 (2), pp. 257‒261, doi; 10.1016/1359-0197(91)90138- R.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc14d972-4a74-43a7-a36f-76b18456042a