PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Review : Microstrip Fractal antenna geometries

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Geometrie anten Microstrip Fractal
Języki publikacji
EN
Abstrakty
EN
With the rapid development of wireless communication system, the main objective is to design of wideband, multiband and small size antenna. To obtains these requirements the fractal antenna is used. The term “fractal” came into the existence in 1975 which means non-regular and never ending pattern. Fractal geometry has advantages of reducing antenna size and obtains multi-band or wideband behaviour; while it’s on the other hand drawback is increasing the complexity of antenna design when increasing the iteration number without notifies any enhancement in antenna performance. Also, fractal geometry has two important properties such as space filling and self-similarity. One of the most hopeful areas of fractal-geometry is its application to the design of antenna to produce miniature size and wideband antenna take advantages from their unique properties of self- similarity property and space-filling.
PL
Wraz z szybkim rozwojem systemów komunikacji bezprzewodowej, głównym celem jest projektowanie anten szerokopasmowych, wielopasmowych io niewielkich rozmiarach. Aby spełnić te wymagania, stosuje się antenę fraktalną. Termin „fraktal” powstał w 1975 roku, co oznacza nieregularny i niekończący się wzór. Geometria fraktalna ma zalety polegające na zmniejszeniu rozmiaru anteny i uzyskaniu zachowania wielopasmowego lub szerokopasmowego; z drugiej strony wadą jest zwiększenie złożoności konstrukcji anteny przy zwiększaniu liczby iteracji bez powiadamiania o zwiększeniu wydajności anteny. Ponadto geometria fraktalna ma dwie ważne właściwości, takie jak wypełnienie przestrzeni i samopodobieństwo. Jednym z najbardziej obiecujących obszarów geometrii fraktalnej jest jej zastosowanie do projektowania anten o miniaturowych rozmiarach, a anteny szerokopasmowe czerpią korzyści z ich unikalnych właściwości samopodobieństwa i wypełniania przestrzeni.
Rocznik
Strony
1--7
Opis fizyczny
Bibliogr. 61 poz., rys., tab.
Bibliografia
  • [1] Ibrahim, A.M., Ibrahim, I.M. and Shairi, N.A., 2019. Compact MIMO Antenna with High Isolation for 5G Smartphone Applications. Journal of Engineering Science & Technology Review, 12(6).
  • [2] Ibrahim, A.M., Ibrahim, I.M. and Shairi, N.A., 2019. Compact MIMO Slot Antenna of Dual-Bands for LTE and 5G Applications. Int. J. Adv. Sci. Technol, 28(13), pp.239-246.
  • [3] Mousa, A.H., Othman, M., Abidin, M.Z. and Ibrahim, A.M., 2021. Fractal H-Vicsek MIMO antenna for 5G communications. Przegląd Elektrotechniczny, 97(6),pp.15-20.
  • [4] Ibrahim, A.M., Ibrahim, I.M. and Shairi, N., 2020. Compact Vshaped MIMO antenna for LTE and 5G applications. Przegląd Elektrotechniczny, 96.
  • [5] Paul S Addison, Fractal and choos. 1967.
  • [6] M. Danos, Fractals and chaos in geology and geophysics, second edition, vol. 79, no. 28. 1998.
  • [7] A. Gorai, A. Karmakar, M. Pal, and R. Ghatak, “A CPW-FED propeller shaped monopole antenna with super wideband characteristics,” Prog. Electromagn. Res. C, vol. 45, no. November, pp. 125–135, 2013.
  • [8] F A.T. Naqv and A.H., “A COMPACT HUT-SHAPED PRINTED ANTENNA FOR SUPER-WIDEBAND APPLICATIONS,” Microw. Opt. Technol. Lett., vol. 55, no. 11, pp. 2562–2568, 2013.
  • [9] J. Yeo and J.-I. Lee, “nated with 50 X resistors. Two NPN silicon bipolar junction tran- sistors BFP640 from Infineon areused in the proposed amplifier. Two pieces of printed circuit broads are used in the proposed amplifier. The middle layer consists of eight short-circuit st,” Microw. Opt. Technol. Lett., vol. 55, no. 11, pp. 2562–2568, 2013.
  • [10] Mohammad A. Dorostkar Mohammad T. Islam and R. Azim, “DESIGN OF A NOVEL SUPER WIDE BAND CIRCULARHEXAGONAL FRACTAL ANTENNA,” Prog. Electromagn. Res., vol. 143, no. August, pp. 545–558, 2013.
  • [11] P. Cao, Y. Huang, J. Zhang, and R. Alrawashdeh, “A compactsuper wideband monopole antenna,” 2013 7th Eur. Conf. Antennas Propagation, EuCAP 2013, no. April, pp. 3107–3110, 2013.
  • [12] A. Siahcheshm, J. Nourinia, Y. Zehforoosh, and B. Mohammadi1, “A COMPACT MODIFIED TRIANGULAR CPWFED ANTENNA WITH MULTIOCTAVE BANDWIDTH,” Microw. Opt. Technol. Lett., vol. 55, no. 11, pp. 2562–2568, 2013.
  • [13] M. Samsuzzaman and M.T. Islam, “A SEMICIRCULAR SHAPED SUPER WIDEBAND PATCH ANTENNA WITH HIGH BANDWIDTH DIMENSION RATIO,” Microw. Opt. Technol. Lett., vol. 55, no. 11, pp. 2562–2568, 2013.
  • [14] M. Manohar, R.S. Kshetrimayum, and A. K. Gogoi, “Printed monopole antenna with tapered feed line, feed region and patch for super wideband applications,” IET Microwaves, Antennas Propag., vol. 8, no. 1, pp. 39–45, 2014.
  • [15] S. Hakimi, S.K.A. Rahim, M. Abedian, S.M. Noghabaei, and M. Khalily, “CPW-Fed transparent antenna for extended ultrawideband applications,” IEEE Antennas Wirel. Propag. Lett., vol. 13, no. c, pp. 1251–1254, 2014.
  • [16] M.A. Dorostkar and Z.H. Firouzeh, “Design of a novel multi & wideband triangular-circular fractal antenna for mobile communication and upper UWB applications,” 2014 7th Int. Symp. Telecommun. IST 2014, no. 1, pp. 154–158, 2014.
  • [17] J. Abraham and T. Mathew, “Dual Band David Fractal Microstrip Patch Antenna for GSM and WiMAX Applications,” Wirel. Eng. Technol., vol. 06, no. 02, pp. 33–40, 2015.
  • [18] R.K. Yadav, J. Kishor, and R.L. Yadava, “A Chaucer microstrip fractal antenna for mobile applications,” J. Commun.Technol. Electron., vol. 61, no. 2, pp. 138–144, 2016.
  • [19] G. Mishra and S. Sahu, “Compact circular patch antenna for SWB applications,” Int. Conf. Commun. Signal Process. ICCSP 2016, pp. 727–730, 2016.
  • [20] S. Singhal and A. K. Singh, “CPW-Fed 8-Shaped Monopole Antenna for Ultra Wideband Applications,” Frequenz, vol. 70, no. 11–12, pp. 479–489, 2016.
  • [21] M.N. Rahman, M.T. Islam, M.Z. Mahmud, and M. Samsuzzaman, “Compact microstrip patch antenna proclaiming super wideband characteristics,” Microw. Opt. Technol. Lett., vol. 59, no. 10, pp. 2563–2570, 2017.
  • [22] A.N. Shareef, A.A. Seleh, and A.B. Shaalan, “Pentagon fractal antenna for above 6 Ghz band applications,” Int. J. Appl. Eng. Res., vol. 12, no. 24, pp. 16017–16023, 2017.
  • [23] H. D. Oskouei and A. Mirtaheri, “A monopole super widebandmicrostrip antenna with band-notch rejection,” Prog. Electromagn. Res. Symp., vol. 2017-Novem, pp. 2019–2024, 2017.
  • [24] M. Manohar, R. S. Kshetrimayum, and A. K. Gogoi, “Super wideband antenna with single band suppression,” Int. J. Microw. Wirel. Technol., vol. 9, no. 1, pp. 143–150, 2017.
  • [25] D. Kaur and J. S. Sivia, “Design of F-shape fractal microstrip patch antenna for C- and X-band applications,” Adv. Intell. Syst. Comput., vol. 628, pp. 199–207, 2018.
  • [26] J. Xue, W. Jiang, and S. Gong, “Chessboard AMC Surface Based on Quasi-Fractal Structure for Wideband RCS Reduction,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 2, pp. 201–204, 2018.
  • [27] D. V. Kiran, D. Sankaranarayanan, and B. Mukherjee, “Compact Embedded Dual-Element Rectangular Dielectric Resonator Antenna Combining Sierpinski and Minkowski Fractals,” IEEE Trans. Components, Packag. Manuf. Technol., vol. 7, no. 5, pp. 786–791, 2017.
  • [28] U. Rafique and S. U. Ud Din, “Beveled-shaped super-wideband planar antenna,” Turkish J. Electr. Eng. Comput. Sci., vol. 26,no. 5, pp. 2417–2425, 2018.
  • [29] D. Srikar and S. Anuradha, “A Compact Super Wideband Antenna for Wireless Communications,” 2018 9th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2018, no. 1, pp. 1–4, 2018.
  • [30] A. Seyfollahi and J. Bornemann, “Printed-Circuit Monopole Antenna for Super- Wideband Applications,” IET, 2018.
  • [31] M.A.A. Syeed, M. Samsuzzaman, M.T. Islam, R. Azim, and M.T. Islam, “Polygonal Shaped Patch with Circular Slotted Ground Antenna for Ultra-Wideband Applications,” Int. Conf. Comput. Commun. Chem. Mater. Electron. Eng. IC4ME2 2018, pp. 1–4, 2018.
  • [32] S. U. Rahman, Q. Cao, H. Ullah, and H. Khalil, “Compact design of trapezoid shape monopole antenna for SWB application,” Microw. Opt. Technol. Lett., vol. 61, no. 8, pp. 1931–1937, 2019.
  • [33] S. Verma and J. A. Ansari, “Analysis of U-slot loaded truncated corner rectangular microstrip patch antenna for broadband operation,” AEU - Int. J. Electron. Commun., vol. 69, no. 10, pp. 1483–1488, 2015.
  • [34] A. Seyfollahi and J. Bornemann, “Printed-Circuit Monopole Antenna for Super- Wideband Applications,” IET, 2018.
  • [35] M.A.A. Syeed, M. Samsuzzaman, M.T. Islam, R. Azim, and M.T. Islam, “Polygonal Shaped Patch with Circular Slotted Ground Antenna for Ultra-Wideband Applications,” Int. Conf. Comput. Commun. Chem. Mater. Electron. Eng. IC4ME2 2018, pp. 1–4, 2018.
  • [36] M.G. Siddiqui, A.K. Saroj, Devesh, and J.A. Ansari, “Multi-band fractaled triangular microstrip antenna for wireless applications,” Prog. Electromagn. Res. M, vol. 65, no. January 2017, pp. 51–60, 2018.
  • [37] S. Joy, S. Natarajamani, and S. M. Vaitheeswaran, “Minkowski fractal circularly polarized planar antenna for GPS application,” Procedia Comput. Sci., vol. 143, pp. 66–73, 2018.
  • [38] G. Varamini, A. Keshtkar, N. Daryasafar, and M. Naser-Moghadasi, “Microstrip Sierpinski fractal carpet for slot antenna with metamaterial loads for dual-band wireless application,” AEU - Int. J. Electron. Commun., vol. 84, no. October 2017, pp. 93–99, 2018.
  • [39] B.S. Deepak, B.T.P. Madhav, V.S.V. Prabhakar, P. Lakshman, T. Anilkumar, and M. V. Rao, “Design and analysis of hetero triangle linked hybrid web fractal antenna for wide band applications,” Prog. Electromagn. Res. C, vol. 83, no. April, pp. 147–159, 2018.
  • [40] N.K. Darimireddy, R.R. Reddy, and A.M. Prasad, “A Miniaturized Hexagonal-Triangular Fractal Antenna for Wide-Band Applications [Antenna Applications Corner],” IEEE Antennas Propag. Mag., vol. 60, no. 2, pp. 104–110, 2018.
  • [41] J. Anguera, A. Andújar, S. Benavente, J. Jayasinghe, and S. Kahng, “High-directivity microstrip antenna with Mandelbrot fractal boundary,” IET Microwaves, Antennas Propag., vol. 12, no. 4, pp. 569–575, 2018.
  • [42] S. Singhal, “Octagonal Sierpinski band-notched super-wideband antenna with defected ground structure and symmetrical feeding,” J. Comput. Electron., vol. 17, no. 3, pp.1071–1081, 2018.
  • [43] M. Elhabchi, M. N. Srifi, and R. Touahni, “A Novel CPW-FedSemi-Circular Triangular Antenna with Modified Ground Plane for Super Ultra Wide Band (UWB) Applications,” Int. Symp. Adv. Electr. Commun. Technol. ISAECT 2018 - Proc., pp. 1–5, 2019.
  • [44] S. U. Rahman, Q. Cao, H. Ullah, and H. Khalil, “Compact design of trapezoid shape monopole antenna for SWB application,” Microw. Opt. Technol. Lett., vol. 61, no. 8, pp. 1931–1937, 2019.
  • [45] M. Kaur and J. S. Sivia, “Giuseppe Peano and Cantor set fractals based miniaturized hybrid fractal antenna for biomedical applications using artificial neural network and firefly algorithm,” Int. J. RF Microw. Comput. Eng., vol. 30, no. 1, pp. 1–11, 2020.
  • [46] S. Singhal, Jaiverdhan, and A.K. Singh, “Elliptical monopole based super wideband fractal antenna,” Microw. Opt. Technol. Lett., vol. 62, no. 3, pp. 1324–1328, 2020.
  • [47] R.K. Garg, M.V.D. Nair, S. Singhal, and R. Tomar, “A new type of compact ultra-wideband planar fractal antenna with WLAN band rejection,” Microw. Opt. Technol. Lett., vol. 62, no.7, pp. 2537–2545, 2020.
  • [48] A. Kumar and A.P.S. Pharwaha, “Development of a Modified Hilbert Curve Fractal Antenna for Multiband Applications,” IETEJ. Res., vol. 0, no. 0, pp. 1–10, 2020.
  • [49] K. Pedram, J. Nourinia, C. Ghobadi, N. Pouyanfar, and M. Karamirad, “Compact and miniaturized metamaterial-based microstrip fractal antenna with reconfigurable qualification,” AEU - Int. J. Electron. Commun., vol. 114, p. 152959, 2020.
  • [50] S. Tripathi, A. Mohan, and S. Yadav, “A compact frequency-reconfigurable fractal UWB antenna using reconfigurable ground plane,” Microw. Opt. Technol. Lett., vol. 59, no. 8, pp. 1800–1808, 2017.
  • [51] Y.K. Choukiker and S.K. Behera, “Wideband frequency reconfigurable Koch snowflake fractal antenna,” IET Microwaves, Antennas Propag., vol. 11, no. 2, pp. 203–208, 2017.
  • [52] S. Singhal, T. Goel, and A.K. Singh, “Hexagonal tree shaped ultra–wideband fractal antenna,” Int. J. Electron. Lett., vol. 5, no. 3, pp. 335–348, 2017, doi: 10.1080/21681724.2016.1218056.
  • [53] S. Singhal and A. K. Singh, “Asymmetrically CPW-Fed Hourglass Shaped UWB Monopole Antenna with Defected Ground Plane,” Wirel. Pers. Commun., vol. 94, no. 3, pp. 1685–1699, 2017.
  • [54] B. Biswas, R. Ghatak, and D. R. Poddar, “A Fern Fractal Leaf Inspired Wideband Antipodal Vivaldi Antenna for Microwave Imaging System,” IEEE Trans. Antennas Propag., vol. 65, no. 11, pp. 6126–6129, 2017.
  • [55] S. Singhal, “Asymmetrically fed octagonal Sierpinski band-notched super-wideband antenna,” J. Comput. Electron., vol. 16, no. 1, pp. 210–219, 2017.
  • [56] D. Kaur and J.S. Sivia, “Design of F-shape fractal microstrip patch antenna for C- and X-band applications,” Adv. Intell. Syst. Comput., vol. 628, pp. 199–207, 2018.
  • [57] J. Xue, W. Jiang, and S. Gong, “Chessboard AMC Surface Based on Quasi-Fractal Structure for Wideband RCS Reduction,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 2,pp. 201–204, 2018.
  • [58] P. Okas, A. Sharma, G. Das, and R.K. Gangwar, “Elliptical slot loaded partially segmented circular monopole antenna for super wideband application,” AEU - Int. J. Electron. Commun., vol. 88, pp. 63–69, 2018.
  • [59] P. Okas, A. Sharma, and R.K. Gangwar, “Super-wideband CPW fed modified square monopole antenna with stabilized radiation characteristics,” Microw. Opt. Technol. Lett., vol. 60, no. 3, pp. 568–575, 2018.
  • [60] U. Rafique and S. U. Ud Din, “Beveled-shaped super-wideband planar antenna,” Turkish J. Electr. Eng. Comput. Sci., vol. 26, no. 5, pp. 2417–2425, 2018.
  • [61] D. Srikar and S. Anuradha, “A Compact Super Wideband Antenna for Wireless Communications,” 2018 9th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2018, no. 1, pp. 1–4, 2018.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc0b4b85-be6e-481d-8eb7-4f3ddfb54869
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.