PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structure-activity of chelating depressants for chalcopyrite/pyrite separation: DFT study and flotation experiment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Three types of chelating depressants were studied for chalcopyrite/pyrite separation, including S-S, S-O, and O-O types, via density functional theory calculations and microflotation. The calculation results indicate that the depressant’s chelating atoms have large coefficient and great activity according to the molecular frontier orbital (HOMO and LUMO) and the orbital coefficients. For S-S type of depressant, S atom in both keto or enol forms won’t affect their HOMO and LUMO patterns and the orbital contributions. For S-O type, the presence of N atom in the ring structure of a molecular will increase the reactivity of O-Cu while weak S-Cu. For O-O type, the electron supply capacity of benzene ring is higher than strain chain, and atom N in strain chain increased their electron supply capacity. The microflotation results basically confirmed the prediction based on the calculation. The simulation results demonstrate that the interaction of a depressant with metals and minerals are affected obviously by the spatial structure and electronic structure of an atom in its molecular.
Rocznik
Strony
102--112
Opis fizyczny
Bibliogr. 33 poz., rys. kolor.
Twórcy
autor
  • Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan 243002, China
  • School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan 243002, China
  • Faculty of Land and Rescource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
  • School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan 243002, China
autor
  • Sinosteel Maanshan Institute of Mining Research Co., Ltd., Ma’anshan 243071, China
autor
  • Faculty of Land and Rescource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
  • School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan 243002, China
  • School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan 243002, China
Bibliografia
  • FLETCHER, B., CHIMONYO, W., PENG, Y., 2020. A comparison of native starch, oxidized starch and CMC as copperactivated pyrite depressants. Minerals Engineering, 156, 106532.
  • GUO, B., PENG, Y., PARKER, G., 2016. Electrochemical and spectroscopic studies of pyrite–cyanide interactions in relation to the depression of pyrite flotation, Minerals. Engineering. 92, 78–85.
  • Zhao, C.H., Chen, J.H., Li, Y.Q., Huang, D.W., Li, W.Z., 2015. DFT study of interactions between calcium hydroxyl ions and pyrite, marcasite, pyrrhotite surfaces. Applications of Surface Science, 355, 577–581.
  • Cao, Z., Chen, X.M., Peng, Y.J., 2018. The role of sodium sulfide in the flotation of pyrite depressed in chalcopyrite flotation. Minerals. Engineering. 119, 93–98.
  • RINELLI, G., MARABINI, A.M., 1973. Flotation of zinc and lead oxide-sulphide ores with chelating agents. 10th International Mineral Processing Congress.
  • FILIPPOV, L.O., SEVEROV, V.V., FILIPPOVA, I.V., 2013. Mechanism of starch adsorption on Fe–Mg–Al–Bering amphiboles. International Journal of Mineral Processing. 123, 120-128.
  • VALDIVIESO, A.L., CERVANTES, T.C., SONG, S., CABRERA, A.R., LASKOWSKI, J.S., 2004. Dextrin as a non-toxic depressant for pyrite in flotation with xanthates as collector. Minerals. Engineering. 17, 1001-1006.
  • BOGUSZ, E., BRIENNE, S.R., BUTLER, I., RAO, S.R., FINCH, J.A., 1997. Metal ions and dextrin adsorption on pyrite. Minerals. Engineering. 10, 441-445.
  • LIU, Q., WANNAS, D., PENG, Y.J., 2006. Exploiting the dual functions of polymer depressants in fine particle flotation. International Journal of Mineral Processing. 80, 244-254.
  • BICAK, O., EKMEKCI, Z., BRADSHAW, D.J., HARRIS, P.J., 2007. Adsorption of guar gum and CMC on pyrite, Minerals. Engineering. 20, 996-1002.
  • WANG, Z.H., XIE, X.H., XIAO, S.M., LIU, J.S., 2010. Adsorption behavior of glucose on pyrite surface investigated by TG, FTIR and XRD analyses. Hydrometallurgy. 102, 87-90.
  • RATH, R.K., SUBRAMANIAN, S., PRADEEP, T., 2000. Surface chemical studies on pyrite in the presence of polysaccharide-based flotation depressants. Journal of Colloid and Interface Science. 229, 82–91.
  • ZHAO, K.L., YAN, W., WANG, X.H., HUI, B., GU, G.H., WANG, H., 2017. The flotation separation of pyrite from pyrophyllite using oxidized guar gum as depressant. International Journal of Mineral Processing. 161, 78–82.
  • HAN G., WEN S., WANG H., 2020. Selective adsorption mechanism of salicylic acid on pyrite surfaces and its application in flotation separation of chalcopyrite from pyrite. Separation and Purification Technology. 240, 116650.
  • HAN G., WEN S., WANG H., 2020. Interaction mechanism of tannic acid with pyrite surfaces and its response to flotation separation of chalcopyrite from pyrite in a low-alkaline medium. Journal of Materials Research and Technology. 9(3), 4421-4430.
  • HAN G., WEN S., WANG H. 2019. Lactic acid as selective depressant for flotation separation of chalcopyrite from pyrite and its depression mechanism. Journal of Molecular Liquids, 296, 111774.
  • KHOSO S.A., LYU F., MENG. X., 2019. Selective separation of chalcopyrite and pyrite with a novel and non-hazardous depressant reagent scheme. Chemical Engineering Science, 209, 115204.
  • KHOSO S.A., HU Y., LYU F., 2019. Selective separation of chalcopyrite from pyrite with a novel non-hazardous biodegradable depressant. Journal of Cleaner Production, 232, 888-897.
  • LEPPINEN, J., MIELCZARSKI, J., 1986. Spectroscopic study of the adsorption of thiol collectors on lead sulphide in the presence of sodium sulphide. International Journal of Mineral Processing. 18: 3-20.
  • NOWAK, P., 1993. Xanthate adsorption at PbS surfaces: molecular model and thermodynamic description. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 76, 65-72.
  • CASES, J.M., DEDONATO, P., 1991. FTIR analysis of sulphide mineral surfaces before and after collection: galena. International Journal of Mineral Processing. 33, 49-65.
  • VREUGDENHIL, A.J., FINCH, J.A., BUTLER, I.S., PAQUIN, I., 1999. Analysis of alkylxanthate collectors on sulphide minerals and flotation products by headspace analysis gasphase infrared spectroscopy (HAGIS). Minerals. Engineering. 12, 745-756.
  • MIELCZARSKI, J.A., CASES, J.M., BARRES, O., 1996. In Situ infrared characterization of surface products of interaction of an aqueous xanthate solution with chalcopyrite, tetrahedrite, and tennantite. Journal of Colloid and Interface Science. 178, 740-748.
  • LAAJALEHTO, K., NOWAK, P., SUONINEN, E., 1993. On the XPS and IR identification of the products of xanthate sorption at the surface of galena. International Journal of Mineral Processing. 37, 123-147.
  • DELLEY, B., 1990. An all-electron numerical method for solving the local density functional for polyatomic molecules. Journal of Chemical Physics. 92, 508-517.
  • DELLEY, B., 2000. From molecules to solids with the DMol3 approach. Journal of Chemical Physics. 113, 7756-7764.
  • KLAMT, A., SCHÜÜRMANN, G., 1993. COSMO: a new approach to dielectric screening in solvents with explicite expressions for the screening energy and its gradient. Journal of the Chemical Society, Perkin Transactions. 2, 799-805.
  • FUKUI, K., YONEZAWA, T., SHINGU, H., 1952. A molecular orbital theory of reactivity in aromatic hydrocarbons. Journal of Chemical Physics. 20, 722-725.
  • HOUK, K.N., 1973. Generalized frontier orbitals of alkenes and dienes. Regioselectivity in Diels-Alder reactions. Journal of the American Chemical Society. 95, 4092-4094.
  • SAUER, J., SUSTMANN, R., 1980. Mechanistic aspects of Diels-Alder Reactions: a critical survey. Angew. Angewandte Chemie International Edition in English. 19, 779-807.
  • LI Y., LIU Y., CHEN J., 2020. Structure-activity of chelating collectors for flotation: A DFT study. Minerals Engineering. 146, 106133.
  • MU, Y.F., LI, L.Q., PENG, Y.J., 2017. Surface properties of fractured and polished pyrite in elation to flotation, Minerals Engineering. 101, 10-19.
  • GUO, H., YEN, W.T., 2003. Pulp potential and floatability of chalcopyrite. Minerals Engineering. 16, 247-256
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc0a9e3d-7bd9-4d14-860f-8df9f9308c2f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.