PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deformation measurement system for UAV components to improve their safe operation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the authors’ method and test rig for performing the deformation analysis of unmanned aircraft fuselages. To conduct the analysis, the DIC system was used, as well as a test rig designed and constructed by the authors, equipped with a dedicated control and load control system. The article presents a description of the research capabilities of the test rig developed for testing the deformation of unmanned aircraft fuselages. Due to the specific operating conditions of the designed fuselage,the test rig developed allows the simulation of loads corresponding to different flight conditions. In addition, it is possible to change the forces acting on the fuselage simultaneously for all servos or each of them separately. Finally, results showing the displacement of component control points for the considered fuselage versions are presented. The tests carried out using the developed test rig allowed the verification of the maximum deformations. The two versions of the composite fuselage of an aerial vehicle have been compared in the paper. The created measurement system and performed analyzes have enabled us to identify and quantitatively analyze the weaknesses of the construction. The results have enabled us to geometrically modify the constructionso the mass of the fuselage reduced by 19% and a coefficient of construction balance increased by 22%.
Rocznik
Strony
art. no. 172358
Opis fizyczny
Bibliogr. 32 poz., fot., rys., wykr.
Twórcy
  • Aeronautics Faculty, Polish Air Force University, Poland
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Poland
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Poland
  • Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin University of Technology, Poland
  • Department of Machine Operation and Production Process Management, Faculty of Production Engineering, University of Life Sciences in Lublin, Poland
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Poland
  • Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin University of Technology, Poland
Bibliografia
  • 1. BalacM, Grbovic A, Petrovic A, Popovic V. FEM analysis of pressure vessel with an investigation of crack growth on cylindrical surface. Eksploatacja i Niezawodnosc –Maintenance and reliability 2018; 20 (3): 378–386, https://doi.org/10.17531/ein.2018.3.5.
  • 2. Baqersad J, Poozesh P, Niezrecki C, Avitabile P. Photogrammetry and optical methods in structural dynamics –A review. Mechanical Systems and Signal Processing 2017; 86: 17–34, https://doi.org/10.1016/j.ymssp.2016.02.011.
  • 3. Barranco-Gutiérrez A I, Padilla-Medina J A, Perez-Pinal F J, Prado-Olivares J, Martínez-Díaz S, Gutiérrez-Frías O O. New Four Points Initialization for Digital Image Correlation in Metal-Sheet Strain Measurements. Applied Sciences 2019; 9(8): 1691, https://doi.org/10.3390/app9081691.
  • 4. Bleischwitz R, de Kat R, Ganapathisubramani B. Aeromechanics of membrane and rigid wings in and out of ground-effect at moderate Reynolds numbers. Journal of Fluids and Structures 2016; 62: 318–331, https://doi.org/10.1016/j.jfluidstructs.2016.02.005.
  • 5. Borkowski P, Dacko A, Rodzewicz M. Synthesis and Structural Analysis of High Strength Composite Flexible Landing Gear Legs. In Rusiński E, Pietrusiak D (eds): Proceedings of the 13th International Scientific Conference: Computer Aided Engineering, Lecture Notes in Mechanical Engineering. Springer, Cham: 2017, https://doi.org/10.1007/978-3-319-50938-9_6.
  • 6. Bornert M, Hild F, Orteu J J, Roux S. Digital Image Correlation, In: Full-Field Measurements and Identification in Solid Mechanics. Hoboken, NJ, USA, John Wiley & Sons, Inc.: 2012: 157–190, https://doi.org/10.1002/9781118578469.ch6.
  • 7. Chen X, Semenov S, McGugan M, Madsen S H, YeniceliS C, Berring P, Branner K. Fatigue testing of a 14.3 m composite blade embedded with artificial defects –Damage growth and structural health monitoring. Composites: Part A 2021; 140: 106189, https://doi.org/10.1016/j.compositesa.2020.106189.
  • 8. Curt J, Capaldo M, Hild F, Roux S. Optimal digital color image correlation. Optics and Lasers in Engineering 2020; 127: 105896, https://doi.org/10.1016/j.optlaseng.2019.105896.
  • 9. Dutton S, Kelly D, Baker A. Composite materials for aircraft structures, 2nd edition. AIAA: 2004, https://doi.org/10.2514/4.861680.
  • 10. Flores M, Mollenhauer D, Runatunga V, Beberniss T, Rapking D, Pankow M. High-speed 3D digital image correlation of low-velocity impacts on composite plates. Composites Part B: Engineering 2017; 131: 153–164, https://doi.org/10.1016/j.compositesb.2017.07.078.
  • 11. GaoJ X, An Z W, Ma Q, Bai X Z. Residual strength assessment of wind turbine rotor blade composites under combined effects of natural aging and fatigue loads. Eksploatacja i Niezawodnosc –Maintenance and Reliability 2020; 22 (4): 601–609, http://doi.org/10.17531/ein.2020.4.3.
  • 12. Gardner N W, Hilburger M W, Haynie W T, Lindell M C, Waters W A. Digital Image Correlation Data Processing and Analysis Techniques to Enhance Test Data Assessment and Improve Structural Simulations. 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Kissimmee, Florida, USA, 8-12 January 2018, https://doi.org/10.2514/6.2018-1698.
  • 13. Gradl P R. Digital Image Correlation Techniques Applied to Large Scale Rocket Engine Testing. 52nd AIAA/SAE/ASEE Joint Propulsion Conference. Salt Lake City, Utah, USA, 25-27 July 2016, https://doi.org/10.2514/6.2016-4977.
  • 14. Gu L, Kasavajhala A R M, Zhao S. Finite element analysis of cracks in aging aircraft structures with bonded composite-patch repairs. Composites Part B: Engineering 2011; 42(3): 505–510, https://doi.org/10.1016/j.compositesb.2010.11.014.
  • 15. Irving P E, Soutis C. Polymer composites in the aerospace industry. Woodhead Publishing: 2014, https://doi.org/10.1016/C2013-0-16303-9.
  • 16. Janeliukstis R, Chen X. Review of digital image correlation application to large-scale composite structure testing. Composite Structures 2021; 271: 114143, https://doi.org/10.1016/j.compstruct.2021.114143.
  • 17. Jebacek I. Measurement of the strain and bending moment on the wing of an aircraft and using of these findings for fatigue test. 27th International Congress of the Aeronautical Sciences. Nice, France, 19-24 September 2010, https://www.icas.org/ICAS_ARCHIVE/ICAS2010/PAPERS/370.PDF.
  • 18. Khadka A, Fick B, Afshar A, Tavakoli M, Baqersad J, Non-contact vibration monitoring of rotating wind turbines using a semi-autonomous UAV. Mechanical Systems and Signal Processing 2020; 138: 106446, https://doi.org/10.1016/j.ymssp.2019.106446.
  • 19. Krawczyk Ł, Gołdyn M, Urban T. About Inaccuracies of DIC System (polish: O Niedokładnościach Systemów Cyfrowej Korelacji Obrazu). Journal of Civil Engineering, Environment and Architecture 2017; t. XXXIV, z. 64 (3/I/17): 259–270, https://doi.org/10.7862/rb.2017.120.
  • 20. Littell J. Large Field Digital Image Correlation Used for Full-Scale Aircraft Crash Testing: Methods and Results. In Sutton M, Reu R L (eds): International Digital Imaging Correlation Society, Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham: 2017: 235–239, https://doi.org/10.1007/978-3-319-51439-0_56.
  • 21. Łusiak T, Kneć M. Use of ARAMIS for Fatigue Process Control in the Accelerated Test for Composites. Transportation Research Procedia 2018; 35: 250–258, https://doi.org/10.1016/j.trpro.2018.12.023.
  • 22. Mwelango M, Zhu T, Wen K, Zhang Z, Yuan X, Li W, Yin X. Coplanar capacitive sensors and their applications in non-destructive evaluation: a review. Nondestructive Testing and Evaluation 2023, 1-45. https://doi.org/10.1080/10589759.2023.2198233.
  • 23. Patil K, Srivastava V, Baqersad J. A multi-view optical technique to obtain mode shapes of structures. Measurement 2018; 122: 358–367, https://doi.org/10.1016/j.measurement.2018.02.059.
  • 24. Schreier H, Orteu J J, Sutton M A, Image Correlation for Shape, Motion and Deformation Measurements. Boston, MA, USA, Springer: 2009, https://doi.org/10.1007/978-0-387-78747-3.
  • 25. Shin H G, Timilsina S, Sohn K S, Kim J S. Digital image correlation compatible mechanoluminescent skin for structural health monitoring. Advanced Science 2022, 9(11), 2105889. https://doi.org/10.1002/advs.202105889.
  • 26. Soutis C. Fibre reinforced composites in aircraft construction. Progress in Aerospace Sciences 2005; 41(2): 143–151, https://doi.org/10.1016/j.paerosci.2005.02.004.
  • 27. Splichal J, Pistek A, Hlinka J. Dynamic tests of composite panels of an aircraft wing. Progress in Aerospace Sciences 2015; 78: 50–61, https://doi.org/10.1016/j.paerosci.2015.05.005.
  • 28. Stasicki B, Boden F. In-flight measurements of aircraft propeller deformation by means of an autarkic fast rotating imaging system. International Conference on Experimental Mechanics 2014, Proceedings of SPIE 9302 (2015), 93022S, https://doi.org/10.1117/12.2081393.
  • 29. Tavares S M O, de Castro P M S T. An overview of fatigue in aircraft structures. Special Issue -Fatigue of Aeronautical Materials & Structures 2017; 40(10): 1510–1529, https://doi.org/10.1111/ffe.12631.
  • 30. Wojtas M, Szczepanik T, Czajkowski Ł. New technology of layered structures implemented in selected gyroplane components. 31stCongress of the International Council of the Aeronautical Sciences. Belo Horizonte, Brasil, 9-14 September 2018, https://www.icas.org/ICAS_ARCHIVE/ICAS2018/data/papers/ICAS2018_0356_paper.pdf.
  • 31. Ye M, Liang J, Li L, Qian B, Ren M, Zhang M, Lu W, Zong Y. Full-field motion and deformation measurement of high speed rotation based on temporal phase-locking and 3D-DIC. Optics and Lasers in Engineering 2021; 146: 106697, https://doi.org/10.1016/j.optlaseng.2021.106697.
  • 32. Zhang Z, Mao H, Liu Y, Jia P, Hu W, Shen P. A risk assessment method of aircraft structure damage maintenance interval considering fatigue crack growth and detection rate. Eksploatacja i Niezawodnosc –Maintenance and Reliability 2023: 25(1), http://doi.org/10.17531/ein.2023.1.3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc077831-7e11-47d9-82dc-e3993cd79a0f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.