PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flying robot technology (drone) trends: a review in the building and construction industry

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the emergence of Industry 4.0, the use of robotic technologies is among today’s trends. The innovations that this revolution brought to robotic construction in the fields of communication, control, and software also improve flying robot technology. In the study, the place and importance of drone technology, which is one of the flying robot technologies at the intersection of Industry 4.0 and AEC (architecture, engineering, and construction) industry, in architecture is defined. The research aims to analyze the digital fabrication studies with drone technology in the field of architecture by reviewing the literature and to reveal how these applications are followed. Studies with drones, which are the technology of the future, are presented by creating a timeline. Drone studies in the building and construction industry were classified according to drone type, gripper and software features and comparative analyses were made. As a result, it is desired to show the development of drone technology in architecture, examine how it is used, and create a reference study in the light of existing examples for its use in future applications.
Rocznik
Strony
47--68
Opis fizyczny
Bibliogr. 121 poz.
Twórcy
  • MSc, Res. Assist.; Atatürk University Faculty of Architecture and Design, Department of Architecture,Erzurum, Turkey
  • Associate Prof.; Gazi University Faculty of Architecture, Department of Architecture, Ankara, Turkey
Bibliografia
  • [1] Bai, C., Dallasega, P., Orzes, G. & Sarkis, J. (2020). Industry 4.0 technologies assessment: A sustainability perspective. International journal of production economics, 229, 107776.
  • [2] Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P. & Harnisch, M. (2015). Industry 4.0: The future of productivity and growth in manufacturing industries. Boston consulting group, 9(1), 54–89.
  • [3] Bai, C., Kusi-Sarpong, S. & Sarkis, J. (2017). An implementation path for green information technology systems in the Ghanaian mining industry. Journal of Cleaner Production, 164, 1105–1123.
  • [4] Stock, T. & Seliger, G. (2016). Opportunities of sustainable manufacturing in industry 4.0. procedia CIRP, 40, 536–541.
  • [5] Takva Ç., İlerisoy Z. Y., & Takva Y. (2022). Investigation of the Shard Tower within the Scope of Advanced Construction Techniques. In Mediterranean International Conference on Research in Applied Sciences, Antalya, Turkey, 22–24 April, 385-398.
  • [6] Ilerisoy, Z. Y., & Takva, Y. (2017). Nanotechnological developments in structural design: Load-bearing materials. Engineering, Technology & Applied Science Research, 7(5), 1900–1903.
  • [7] Takva Y., İlerisoy Z. Y., & Takva Ç. (2022). Modular system applications in high-rise buildings. In Mediterranean International Conference on Research in Applied Sciences, Antalya, Turkey, 22–24 April, 399–409.
  • [8] İlerisoy, Z. Y., & Başeğmez, M. P. (2018). Conceptual Research of Movement in Kinetic Architecture. Gazi University Journal of Science, 31(2), 342–352.
  • [9] Maskuriy, R., Selamat, A., Maresova, P., Krejcar, O. & David, O. O. (2019). Industry 4.0 for the construction industry: Review of management perspective. Economies, 7(3), 68.
  • [10] Lasi, H., Fettke, P., Kemper, H. G., Feld, T. & Hoffmann, M. (2014). Industry 4.0. Business & information systems engineering, 6(4), 239–242.
  • [11] Fengque, P. E. I., Yifei, T., Fei, H. E. & Dongbo, L. I. (2017). Research on design of the smart factory for forging enterprise in the industry 4.0 environment. Mechanics, 23(1), 146–152.
  • [12] Ng, T. C., Lau, S. Y., Ghobakhloo, M., Fathi, M. & Liang, M. S. (2022). The Application of Industry 4.0 Technological Constituents for Sustainable Manufacturing: A Content-Centric Review. Sustainability, 14(7), 4327.
  • [13] Gajdzik, B., Grabowska, S. & Saniuk, S. (2021). A theoretical framework for industry 4.0 and its implementation with selected practical schedules. Energies, 14(4), 940.
  • [14] Lovelock, J. (2019). Novacene: The coming age of hyperintelligence. Mit Press.
  • [15] Javaid, M., Khan, I. H., Singh, R. P., Rab, S. & Suman, R. (2021). Exploring contributions of drones towards Industry 4.0. Industrial Robot, 49(3), 476–490.
  • [16] Gao, Z., Wanyama, T., Singh, I., Gadhrri, A. & Schmidt, R. (2020). From industry 4.0 to robotics 4.0-a conceptual framework for collaborative and intelligent robotic systems. Procedia manufacturing, 46, 591–599.
  • [17] Javaid, M., Haleem, A., Singh, R. P. & Suman, R. (2021). Substantial capabilities of robotics in enhancing industry 4.0 implementation. Cognitive Robotics, 1, 58–75.
  • [18] Závadská, Z. & Závadský, J. (2020). Quality managers and their future technological expectations related to Industry 4.0. Total Quality Management & Business Excellence, 31(7–8), 717–741.
  • [19] Prado, M., Dörstelmann, M., Schwinn, T., Menges, A. & Knippers, J. (2014). Core-less filament winding. In Robotic fabrication in architecture, art and design 2014 (pp. 275–289). Springer, Cham.
  • [20] Valente, M., Sibai, A. & Sambucci, M. (2019). Extrusion-based additive manufacturing of concrete products: revolutionizing and remodeling the construction industry. Journal of composites science, 3(3), 88.
  • [21] Roch, J. L. (2020). UAV classification and associated mission planning. In Multi-Rotor Platform-Based UAV Systems (pp. 27-44). ISTE.
  • [22] Yablonina, M. & Menges, A. (2018, September). Towards the development of fabrication machine species for filament materials. In Robotic fabrication in architecture, art and design (pp. 152-166). Springer, Cham.
  • [23] Nouacer, R., Hussein, M., Espinoza, H., Ouhammou, Y., Ladeira, M. & Castiñeira, R. (2020). Towards a framework of key technologies for drones. Microprocessors and Microsystems, 77, 103142.
  • [24] Hammad, A. W., da Costa, B. B., Soares, C. A. & Haddad, A. N. (2021). The Use of Unmanned Aerial Vehicles for Dynamic Site Layout Planning in Large-Scale Construction Projects. Buildings, 11(12), 602.
  • [25] Vashist, S. & Jain, S. (2019). Location-aware network of drones for consumer applications: Supporting efficient management between multiple drones. IEEE Consumer Electronics Magazine, 8(3), 68–73.
  • [26] Sestras, P., Roșca, S., Bilașco, Ș., Naș, S., Buru, S. M., Kovacs, L., ... & Sestras, A. F. (2020). Feasibility assessments using unmanned aerial vehicle technology in heritage buildings: Rehabilitation-restoration, spatial analysis and tourism potential analysis. Sensors, 20(7), 2054.
  • [27] Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., ... & Guizani, M. (2019). Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. Ieee Access, 7, 48572–48634.
  • [28] Owerko, P., Kałuża, J., & Wazowski, M. (2021). A proposal to facilitate mandatory bridge load tests with artificial neural network analyses using a digital data aggregation platform. Architecture, Civil Engineering, Environment, 14(3), 69–78.
  • [29] Tovarovıć, J. Č., Šekularac, J. I., & Šekularac, N. (2016). Modelling of decision-making framework for selection technological adequacy system media facades. Architecture Civil Engineering Environment, 9(3), 55–70.
  • [30] Videras Rodríguez, M., Melgar, S. G., Cordero, A. S. & Márquez, J. M. A. (2021). A Critical Review of Unmanned Aerial Vehicles (UAVs) Use in Architecture and Urbanism: Scientometric and Bibliometric Analysis. Applied Sciences, 11(21), 9966.
  • [31] Kang, S., Park, M. W. & Suh, W. (2019). Feasibility study of the unmanned-aerial-vehicle radio-frequency identification system for localizing construction materials on large-scale open sites. Sensors and Materials, 31(5), 1449–1465.
  • [32] Moore, G. K. (1979). What is a picture worth? A history of remote sensing/Quelle est la valeur d’une image? Un tour d’horizon de télédétection. Hydrological Sciences Bulletin, 24(4), 477–485.
  • [33] Keane, J. F. & Carr, S. S. (2013). A brief history of early unmanned aircraft. Johns Hopkins APL Technical Digest, 32(3), 558–571.
  • [34] Cai, G., Lum, K. Y., Chen, B. M. & Lee, T. H. (2010). A brief overview on miniature fixed-wing unmanned aerial vehicles. IEEE ICCA 2010, 285–290.
  • [35] Ammar, M. (2016). Aerial Construction: Robotic Fabrication of Tensile Structures with Flying Machines (Doctoral dissertation, ETH Zurich).
  • [36] Trubia, S., Curto, S., Severino, A., Arena, F. & Puleo, L. (2021, March). The use of UAVs for civil engineering infrastructures. In AIP Conference Proceedings (Vol. 2343, No. 1, p. 110012). AIP Publishing LLC.
  • [37] Kumar, A. & Muhammad, B. (2018, November). On how internet of drones is going to revolutionise the technology application and business paradigms. In 2018 21st International Symposium on Wireless Personal Multimedia Communications (WPMC) (pp. 405–410). IEEE.
  • [38] Hassanalian, M. & Abdelkefi, A. (2017). Classifications, applications, and design challenges of drones: A review. Progress in Aerospace Sciences, 91, 99–131.
  • [39] Chan, K. W., Nirmal, U. & Cheaw, W. G. (2018, November). Progress on drone technology and their applications: A comprehensive review. In AIP Conference Proceedings 2030(1), 020308. AIP Publishing LLC.
  • [40] Chamola, V., Kotesh, P., Agarwal, A., Gupta, N. & Guizani, M. (2021). A comprehensive review of unmanned aerial vehicle attacks and neutralization techniques. Ad hoc networks, 111, 102324.
  • [41] Alghamdi, Y., Munir, A., & La, H. M. (2021). Architecture, classification, and applications of contemporary unmanned aerial vehicles. IEEE Consumer Electronics Magazine, 10(6), 9–20.
  • [42] Contreras, R., Ayala, A. & Cruz, F. (2020). Unmanned aerial vehicle control through domain-based automatic speech recognition. Computers, 9(3), 75.
  • [43] Seymour, A. C., Dale, J., Hammill, M., Halpin, P. N. & Johnston, D. W. (2017). Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery. Scientific reports, 7(1), 1–10.
  • [44] Elmeseiry, N., Alshaer, N. & Ismail, T. (2021). A detailed survey and future directions of unmanned aerial vehicles (uavs) with potential applications. Aerospace, 8(12), 363.
  • [45] Xia, K., Lee, S. & Son, H. (2020). Adaptive control for multi-rotor UAVs autonomous ship landing with mission planning. Aerospace Science and Technology, 96, 105549.
  • [46] Kardasz, P., Doskocz, J., Hejduk, M., Wiejkut, P. & Zarzycki, H. (2016). Drones and possibilities of their using. J. Civ. Environ. Eng, 6(3), 1–7.
  • [47] Clarke, R. (2014). Understanding the drone epidemic. Computer Law & Security Review, 30(3), 230–246.
  • [48] Macrina, G., Pugliese, L. D. P., Guerriero, F. & Laporte, G. (2020). Drone-aided routing: A literature review. Transportation Research Part C: Emerging Technologies, 120, 102762.
  • [49] Shraim, H., Awada, A. & Youness, R. (2018). A survey on quadrotors: Configurations, modeling and identification, control, collision avoidance, fault diagnosis and tolerant control. IEEE Aerospace and Electronic Systems Magazine, 33(7), 14–33.
  • [50] Panagiotou, P. & Yakinthos, K. (2020). Aerodynamic efficiency and performance enhancement of fixed-wing UAVs. Aerospace Science and Technology, 99, 105575.
  • [51] Dileep, M. R., Navaneeth, A. V., Ullagaddi, S. & Danti, A. (2020, November). A study and analysis on various types of agricultural drones and its applications. In 2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN) (pp. 181-185). IEEE.
  • [52] Sanjana, P. & Prathilothamai, M. (2020, March). Drone design for first aid kit delivery in emergency situation. In 2020 6th international conference on advanced computing and communication systems (ICACCS) (pp. 215-220). IEEE.
  • [53] McLeod, T., Samson, C., Labrie, M., Shehata, K., Mah, J., Lai, P., ... & Elder, J. H. (2013). Using video acquired from an unmanned aerial vehicle (UAV) to measure fracture orientation in an open-pit mine. Geomatica, 67(3), 173–180.
  • [54] Ayamga, M., Akaba, S. & Nyaaba, A. A. (2021). Multifaceted applicability of drones: A review. Technological Forecasting and Social Change, 167, 120677.
  • [55] Zaludin, Z. & Harituddin, A. S. M. (2019, October). Challenges and Trends of Changing from Hover to Forward Flight for a Converted Hybrid Fixed Wing VTOL UAS from Automatic Flight Control System Perspective. In 2019 IEEE 9th International Conference on System Engineering and Technology (ICSET) (pp. 247-252). IEEE.
  • [56] Sekander, S., Tabassum, H. & Hossain, E. (2018). Multi-tier drone architecture for 5G/B5G cellular networks: Challenges, trends, and prospects. IEEE Communications Magazine, 56(3), 96–103.
  • [57] Alharthi, M., Taha, A. E. M. & Hassanein, H. S. (2019, May). An architecture for software defined drone networks. In ICC 2019-2019 IEEE International Conference on Communications (ICC) (pp. 1–5). IEEE.
  • [58] Giones, F. & Brem, A. (2017). From toys to tools: The co-evolution of technological and entrepreneurial developments in the drone industry. Business Horizons, 60(6), 875–884.
  • [59] Saha, A., Kumar, A. & Sahu, A. K. (2017, November). FPV drone with GPS used for surveillance in remote areas. In 2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN) (pp. 62–67). IEEE.
  • [60] Miranda, V. R., Rezende, A., Rocha, T. L., Azpúrua, H., Pimenta, L. C. & Freitas, G. M. (2022). Autonomous Navigation System for a Delivery Drone. Journal of Control, Automation and Electrical Systems, 33(1), 141–155.
  • [61] da Silva Ferreira, M. A., Begazo, M. F. T., Lopes, G. C., de Oliveira, A. F., Colombini, E. L. & da Silva Simões, A. (2020). Drone reconfigurable architecture (dra): A multipurpose modular architecture for Unmanned Aerial Vehicles (UAVs). Journal of Intelligent & Robotic Systems, 99(3), 517-534.
  • [62] Xin, T. J., Farizuan, R. M., Radhwan, H., Shayfull, Z. & Fathullah, M. (2019, July). Redesign of drone remote control using design for manufacturing and assembly (DFMA) method. In AIP Conference Proceedings (Vol. 2129, No. 1, p. 020159). AIP Publishing LLC.
  • [63] Ayamga, M., Tekinerdogan, B. & Kassahun, A. (2021). Exploring the challenges posed by regulations for the use of drones in agriculture in the African context. Land, 10(2), 164.
  • [64] Mkiramweni, M. E., Yang, C., Li, J. & Zhang, W. (2019). A survey of game theory in unmanned aerial vehicles communications. IEEE Communications Surveys & Tutorials, 21(4), 3386–3416.
  • [65] Maddikunta, P. K. R., Hakak, S., Alazab, M., Bhattacharya, S., Gadekallu, T. R., Khan, W. Z. & Pham, Q. V. (2021). Unmanned aerial vehicles in smart agriculture: Applications, requirements, and challenges. IEEE Sensors Journal, 21(16), 17608–17619.
  • [66] Semsch, E., Jakob, M., Pavlicek, D. & Pechoucek, M. (2009, September). Autonomous UAV surveillance in complex urban environments. In 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (Vol. 2, pp. 82–85). IEEE.
  • [67] Siebert, S. & Teizer, J. (2014). Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Automation in construction, 41, 1–14.
  • [68] Nooralishahi, P., Ibarra-Castanedo, C., Deane, S., López, F., Pant, S., Genest, M., ... & Maldague, X. P. (2021). Drone-Based Non-Destructive Inspection of Industrial Sites: A Review and Case Studies. Drones, 5(4), 106.
  • [69] Laszlo, B., Agoston, R. & Xu, Q. (2018). Conceptual approach of measuring the professional and economic effectiveness of drone applications supporting forest fire management. Procedia engineering, 211, 8-17.
  • [70] Matikainen, L., Lehtomäki, M., Ahokas, E., Hyyppä, J., Karjalainen, M., Jaakkola, A., ... & Heinonen, T. (2016). Remote sensing methods for power line corridor surveys. ISPRS Journal of Photogrammetry and Remote sensing, 119, 10–31.
  • [71] Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S. & Çöltekin, A. (2015). Applications of 3D city models: State of the art review. ISPRS International Journal of Geo-Information, 4(4), 2842–2889.
  • [72] Lee, S. & Choi, Y. (2016). Reviews of unmanned aerial vehicle (drone) technology trends and its applications in the mining industry. Geosystem Engineering, 19(4), 197–204.
  • [73] Fernández Hernandez, J., González Aguilera, D., Rodríguez Gonzálvez, P. & Mancera Taboada, J. (2015). Image based modelling from unmanned aerial vehicle (UAV) photogrammetry: an effective, low cost tool for archaeological applications. Archaeometry, 57(1), 128–145.
  • [74] Škrinjar, J. P., Škorput, P. & Furdić, M. (2018, June). Application of unmanned aerial vehicles in logistic processes. In International Conference “New Technologies, Development and Applications” (pp. 359-366). Springer, Cham.
  • [75] Li, Y. & Liu, C. (2019). Applications of multirotor drone technologies in construction management. International Journal of Construction Management, 19(5), 401–412.
  • [76] Shahmoradi, J., Talebi, E., Roghanchi, P. & Hassanalian, M. (2020). A comprehensive review of applications of drone technology in the mining industry. Drones, 4(3), 34.
  • [77] Giordan, D., Adams, M. S., Aicardi, I., Alicandro, M., Allasia, P., Baldo, M., ... & Troilo, F. (2020). The use of unmanned aerial vehicles (UAVs) for engineering geology applications. Bulletin of Engineering Geology and the Environment, 79(7), 3437-3481.
  • [78] Pham, Q. V., Fang, F., Ha, V. N., Piran, M. J., Le, M., Le, L. B., ... & Ding, Z. (2020). A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art. IEEE Access, 8, 116974-117017.
  • [79] Balasingam, M. (2017). Drones in medicine – the rise of the machines. International journal of clinical practice, 71(9), e12989.
  • [80] Ramadass, L., Arunachalam, S. & Sagayasree, Z. (2020). Applying deep learning algorithm to maintain social distance in public place through drone technology. International Journal of Pervasive Computing and Communications.
  • [81] Colomina, I. & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of photogrammetry and remote sensing, 92, 79–97.
  • [82] Turner, D., Lucieer, A. & De Jong, S. M. (2015). Time series analysis of landslide dynamics using an unmanned aerial vehicle (UAV). Remote Sensing, 7(2), 1736–1757.
  • [83] Giordan, D., Manconi, A., Facello, A., Baldo, M., Allasia, P. & Dutto, F. (2015). Brief Communication: The use of an unmanned aerial vehicle in a rockfall emergency scenario. Natural Hazards and Earth System Sciences, 15(1), 163–169.
  • [84] Whitehead, K., Moorman, B. J. & Hugenholtz, C. H. (2013). Brief Communication: Low-cost, on-demand aerial photogrammetry for glaciological measurement. The Cryosphere, 7(6), 1879-1884.
  • [85] Piermattei, L., Carturan, L., de Blasi, F., Tarolli, P., Dalla Fontana, G., Vettore, A. & Pfeifer, N. (2016). Suitability of ground-based SfM–MVS for monitoring glacial and periglacial processes. Earth Surface Dynamics, 4(2), 425-443.
  • [86] Mohammed, F., Idries, A., Mohamed, N., Al-Jaroodi, J. & Jawhar, I. (2014, May). UAVs for smart cities: Opportunities and challenges. In 2014 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 267-273). IEEE.
  • [87] Moulianitis, V. C., Thanellas, G., Xanthopoulos, N. & Aspragathos, N. A. (2018, June). Evaluation of UAV based schemes for forest fire monitoring. In International Conference on Robotics in Alpe-Adria Danube Region (pp. 143–150). Springer, Cham.
  • [88] Yuan, C., Zhang, Y. & Liu, Z. (2015). A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques. Canadian journal of forest research, 45(7), 783–792.
  • [89] Kullmann, K. (2018). The drone’s eye: applications and implications for landscape architecture. Landscape Research, 43(7), 906–921.
  • [90] Christoforou, E. G., & Müller, A. (2016). RUR revisited: perspectives and reflections on modern robotics. International Journal of Social Robotics, 8(2), 237–246.
  • [91] Mirjan, A., Gramazio, F., Kohler, M., Augugliaro, F. & D’Andrea, R. (2013). Architectural fabrication of tensile structures with flying machines. Green design, materials and manufacturing processes, 513–518.
  • [92] Gramazio, F. & Kohler, M. (2008). Towards a digital materiality. In Manufacturing Material Effects: Rethinking Design and Making Architecture (pp. 103–118). Routledge.
  • [93] Han, I. X., Meggers, F. & Parascho, S. (2021). Bridging the collectives: A review of collective human–robot construction. International Journal of Architectural Computing, 19(4), 512–531.
  • [94] Petersen, K. H., Napp, N., Stuart-Smith, R., Rus, D. & Kovac, M. (2019). A review of collective robotic construction. Science Robotics, 4(28), eaau8479.
  • [95] Mueller, M. W. & D’Andrea, R. (2016). Relaxed hover solutions for multicopters: Application to algorithmic redundancy and novel vehicles. The International Journal of Robotics Research, 35(8), 873–889.
  • [96] Mirjan, A., Gramazio, F. & Kohler, M. (2014). Building with flying robots. Fabricate: Negotiating Design and Making, gta-Verlag, Zurich, 266–271.
  • [97] Joo, H., Son, C., Kim, K., Kim, K. & Kim, J. (2007, October). A study on the advantages on high-rise building construction which the application of construction robots take (iccas 2007). In 2007 International Conference on Control, Automation and Systems (pp. 1933-1936). IEEE.
  • [98] Lindsey, Q., Mellinger, D. & Kumar, V. (2011). Construction of cubic structures with quadrotor teams. Proc. Robotics: Science & Systems VII, 7.
  • [99] Lindsey, Q., Mellinger, D. & Kumar, V. (2012). Construction with quadrotor teams. Autonomous Robots, 33(3), 323-336.
  • [100] Augugliaro, F., Lupashin, S., Hamer, M., Male, C., Hehn, M., Mueller, M. W., ... & D’Andrea, R. (2014). The flight assembled architecture installation: Cooperative construction with flying machines. IEEE Control Systems Magazine, 34(4), 46-64.
  • [101] Lupashin, S., Hehn, M., Mueller, M. W., Schoellig, A. P., Sherback, M. & D’Andrea, R. (2014). A platform for aerial robotics research and demonstration: The flying machine arena. Mechatronics, 24(1), 41-54.
  • [102] Augugliaro, F. & D’Andrea, R. (2013, July). Admittance control for physical human-quadrocopter interaction. In 2013 European Control Conference (ECC) (pp. 1805-1810). IEEE.
  • [103] Willmann, J., Augugliaro, F., Cadalbert, T., D’Andrea, R., Gramazio, F. & Kohler, M. (2012). Aerial robotic construction towards a new field of architectural research. International journal of architectural computing, 10(3), 439–459.
  • [104] Augugliaro, F., Mirjan, A., Gramazio, F., Kohler, M. & D’Andrea, R. (2013, November). Building tensile structures with flying machines. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3487–3492). IEEE.
  • [105] Mirjan, A., Augugliaro, F., D’Andrea, R., Gramazio, F. & Kohler, M. (2016). Building a bridge with flying robots. In Robotic fabrication in architecture, art and design 2016 (pp. 34–47). Springer, Cham.
  • [106] Reichert, S., Schwinn, T., La Magna, R., Waimer, F., Knippers, J. & Menges, A. (2014). Fibrous structures: An integrative approach to design computation, simulation and fabrication for lightweight, glass and carbon fibre composite structures in architecture based on biomimetic design principles. Computer-Aided Design, 52, 27–39.
  • [107] Irizarry, J. (2020). Construction 4.0: An innovation platform for the built environment. Routledge.
  • [108] Felbrich, B., Prado, M., Saffarian, S., Solly, J., Vasey, L., Knippers, J. & Menges, A. (2017). Multi-machine fabrication: An integrative design process utilising an autonomous UAV and Industrial robots for the fabrication of long-span composite structures.
  • [109] Wood, D., Yablonina, M., Aflalo, M., Chen, J., Tahanzadeh, B. & Menges, A. (2018, September). Cyber physical macro material as a UAV [re] configurable architectural system. In Robotic fabrication in architecture, art and design (pp. 320-335). Springer, Cham.
  • [110] Kondak, K., Krieger, K., Albu-Schaeffer, A., Schwarzbach, M., Laiacker, M., Maza, I., ... & Ollero, A. (2013). Closed-loop behavior of an autonomous helicopter equipped with a robotic arm for aerial manipulation tasks. International Journal of Advanced Robotic Systems, 10(2), 145.
  • [111] Villa, D. K., Brandao, A. S. & Sarcinelli-Filho, M. (2020). A survey on load transportation using multirotor UAVs. Journal of Intelligent & Robotic Systems, 98(2), 267–296.
  • [112] Naboni, R. (2022). Cyber-Physical Construction and Computational Manufacturing. In Industry 4.0 for the Built Environment (pp. 515-540). Springer, Cham.
  • [113] Khamseh, H. B., Janabi-Sharifi, F. & Abdessameud, A. (2018). Aerial manipulation—A literature survey. Robotics and Autonomous Systems, 107, 221–235.
  • [114] Braithwaite, A., Alhinai, T., Haas-Heger, M., McFarlane, E. & Kovač, M. (2018). Tensile web construction and perching with nano aerial vehicles. In Robotics research (pp. 71-88). Springer, Cham.
  • [115] Goessens, S., Mueller, C. & Latteur, P. (2018). Feasibility study for drone-based masonry construction of real-scale structures. Automation in Construction, 94, 458-480.
  • [116] Pereira da Silva, N. & Eloy, S. (2021). Robotic Construction: Robotic Fabrication Experiments for the Building Construction Industry. In Sustainability and Automation in Smart Constructions (pp. 97–109). Springer, Cham.
  • [117] Solly, J., Früh, N., Saffarian, S., Aldinger, L., Margariti, G. & Knippers, J. (2019, April). Structural design of a lattice composite cantilever. In Structures (Vol. 18, pp. 28–40). Elsevier.
  • [118] Yazici, S. & Tanacan, L. (2020). Material-based computational design (MCD) in sustainable architecture. Journal of Building Engineering, 32, 101543.
  • [119] Melenbrink, N., Werfel, J. & Menges, A. (2020). Onsite autonomous construction robots: Towards unsupervised building. Automation in construction, 119, 103312.
  • [120] Eloy, S. & da Silva, N. P. (2021). The Robotic Dance: A Fictional Narrative of a Construction Built by Drones. In Virtual Aesthetics in Architecture (pp. 121–129). Routledge.
  • [121] Toprak, G. K., & Sahil, S. International Agreements On Designing New Buildings In Historic Cities. Gazi University Journal of Science Part B: Art Humanities Design and Planning, 7(4), 471–477.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc011494-c853-4e8a-bc9b-b26ecd6a8314
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.