PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design Principles of Horizontal Drum Machines with Low Vibration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using the example of washing machines using the linear theory of vibrations, the dynamics of horizontal rotary drum machines is investigated and the basic requirements for their layout are formulated to reduce vibration activity. The mathematical equations of vibrations of the multiply connected system tub-drum on elastic suspensions are compiled for main types of washing machines and centrifuges with horizontal axis of rotation. The problem is solved in a linear setting based on the Lagrange equation of the second kind. The accuracy and adequacy of the mathematical model was tested directly on a full-scale object by measuring noise, vibrations, support forces and stress distribution in individual elements and units of the washing machine in the entire range of drum rotation frequencies. Investigations of the nature of system vibrations depending on changes in the position and attachment points of elastic and damping elements were carried out using simulation in the Simulink environment. As a result of the research, the basic requirements for the layout of horizontal rotary drum machines were experimentally confirmed. Experimental verification was carried out to confirm the results obtained. It has been experimentally proven that the improvement of the experimental setup to reduce its vibration activity increases the efficiency of using direct-acting liquid autobalancers.
Twórcy
autor
  • Software Engineering Department, Khmelnytskyi National University, 11 Institutska st, Khmelnitskyi, 29016, Ukraine
  • Physics and Electrical Engineering Department, Khmelnytskyi National University, 11 Institutska st, Khmelnitskyi, 29016, Ukraine
  • Department of Applied Computer Science, Faculty of Mechanical Engineering, Cracow University of Technology, 37 Jana Pawla II, 31-864 Krakow, Poland
Bibliografia
  • 1. Ribeiro, E.A., Pereira, J.T., & Bavastri, C.A. (2015). Passive vibration control in rotor dynamics: optimization of composed support using viscoelastic materials. Journal of Sound and Vibration, 351, 43-56
  • 2. Osinski, Z. (Ed.). (2018). Damping of vibrations. CRC Press.
  • 3. Shen, Y., Chen, L., Yang, X., Shi, D., & Yang, J. (2016). Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension. Journal of Sound and Vibration, 361, 148-158.
  • 4. MacCamhaoil, M. (2016). Static and dynamic balancing of rigid rotors. Bruel & Kjaer application notes, BO, 0276-12.
  • 5. Goroshko, A., Ostaševičius, V., & Royzman, V. (2016). Balancing of turbomachine rotors by increasing the eccentricity identification accuracy. Mechanics, 22(3), 206-211.
  • 6. Wan, S.K., Li, X.H., Su, W.J. et al (2019). Active damping of milling chatter vibration via a novel spindle system with an integrated electromagnetic actuator. Precision Engineering, 57: 203-210.
  • 7. Fan, H.W., Zhi, J.J., Shi, B.J. et al (2018). Adaptive rotor balancing algorithm and single-disk rotation test for electromagnetic balancer. Journal of Xi’an Jiaotong University, 52(8): 15-21, 29.
  • 8. Pan, X., Lu, J., Huo, J. et al (2020). A review on self-recovery regulation (SR) technique for unbalance vibration of high-end equipment. Chin. J. Mech. Eng. 33, 89.
  • 9. Peng, C., He, J.X., Zhu, M.T. et al (2019). Optimal synchronous vibration control for magnetically suspended centrifugal compressor. Mechanical Systems and Signal Processing, 132: 776-789.
  • 10. Goncharov, V., Filimonikhin, G., Dumenko, K. et al. (2016). Studying the peculiarities of balancing of flexible double-support rotors by two passive automatic balancers placed near supports. Eastern-European Journal of Enterprise Technologies, 4(7): 4-9.
  • 11. Royzman, V., Drach, I., Tkachuk, V., Pilkauskas, K., Čižauskas, G., & Šulginas, A. (2018). Operation of passive fluid self-balancing device at resonance transition regime. Mechanics, 24(6), 805-810.
  • 12. Xiao, L., Zhang, S. (2017). Analysis and optimization of drum washing machine vibration isolation system based on rigid-flexible virtual prototype model. Journal of Vibroengineering, 19(3). 1653-1664.
  • 13. Drüke, S., Bicker, R., Schuller, B., Henke, C., Trächtler, A. (2019) Rotordynamic instabilities in washing machines. In: Cavalca K., Weber H. (Eds). Proceedings of the 10th International Conference on Rotor Dynamics, IFToMM 2018. Mechanisms and Machine Science, vol. 61. Springer, Cham.
  • 14. Ulasyar, A., Lazoglu, I. (2018) Design and analysis of a new magneto rheological damper for washing machine. J Mech Sci Technol 32, 1549–1561.
  • 15. Fetisov, V.G., Alekhin, S.N., & Petrosov, S.P. (2012). Study of nonhomogeneous equations with variable coefficients describing washing machines vibration. European Researcher, (5-2), 609-612.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dbfc19c6-2f15-4c70-abfa-4b9dbed36537
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.