Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Nowy ekologiczny materiał mineralno-węglowy do adsorpcji zanieczyszczeń organicznych : krok w kierunku gospodarki o obiegu zamkniętym
Języki publikacji
Abstrakty
Two industrial waste products – namely, cement bypass dust and apple pomace - were used in the synthesis of a new ecological mineral-carbonaceous material intended that can be used for the adsorption of organic pollutants. The raw materials were mixed at initial ratios of 1:5, 1:9, and 1:18, then subjected to pyrolysis in a nitrogen atmosphere at 800°C. The chemical characterization of the resulting mineral-carbonaceous materials showed that the concentrations of Zn, Cd, and Pb were significantly lower than those in the raw and pyrolyzed bypass dust samples, while the concentrations of Na, Mg, Si, and P were higher. The composition and structure of the mineral-carbonaceous materials depend on the initial dust-to-pomace weight ratio. All materials exhibited a mesoporous nature, with specific surface areas more than one hundred times greater than those of the individual substrates. The highest value exhibits the material with the 1:9 bypass dust-to-apple pomace ratio. This material also had a homogenous, fine-grained structure, with the bypass dust completely covered by carbon. After 24 h, approximately 90% of captan was removed from the aqueous solution and adsorbed onto the mineral-carbonaceous materials. The removal efficiency depended on the initial bypass dust-to-apple pomace ratio, with the best performance (97.3%) observed in the material synthesized at the 1:9 ratio. Our results confirm that otherwise useless wastes can serve as suitable substrates for the synthesis of mineral-carbonaceous materials, which can function as adsorbents for organic pollutants and as potential sources of valuable nutrients.
Dwa odpady przemysłowe, pył cementowy i wytłoki jabłkowe, wykorzystano w syntezie nowego ekologicznego materiału mineralno-węglowego, który może być stosowany do adsorpcji zanieczyszczeń organicznych. Surowce zmieszano w proporcjach początkowych 1:5, 1:9 i 1:18 i poddano pirolizie w atmosferze azotu w temperaturze 800°C. Scharakteryzowano skład pierwiastkowy i mineralny oraz właściwości powierzchniowe za pomocą izoterm adsorpcji-desorpcji azotu w niskiej temperaturze. Właściwości adsorpcyjne kaptanu mierzono metodą GCMS. Charakterystyka chemiczna materiałów mineralno-węglowych wskazała, że stężenia Zn, Cd i Pb w syntetyzowanych materiałach były znacznie niższe niż w surowych i pirolizowanych przez próbki pyłu bypass, podczas gdy stężenia Na, Mg, Si lub P były wyższe. Skład i struktura materiałów mineralno-węglowych zależą od początkowego stosunku wagowego pyłu do wytłoków. Wszystkie materiały wykazywały naturę mezoporowatą, o powierzchni właściwej, która była ponad sto razy większa od powierzchni poszczególnych substratów. Jednak najwyższą wartość wykazuje materiał o stosunku pyłu bypass do wytłoków jabłkowych 1:9. Zaobserwowano, że po 24 godzinach około 90% kaptanu zostało usunięte z roztworu wodnego i zaadsorbowane na materiałach mineralno-węglowych. Wydajność usuwania zależała od początkowego stosunku pyłu bypass do wytłoków jabłkowych, a najlepsze wyniki (97,3%) odnotowano dla materiału o początkowym stosunku 1 do 9. Wyniki naszych badań potwierdziły, że bezużyteczne odpady stanowią odpowiednie substraty do syntezy materiałów mineralno-węglowych, które mogą być wykorzystywane jako adsorbenty zanieczyszczeń organicznych oraz stanowić potencjalne źródło cennych składników odżywczych.
Czasopismo
Rocznik
Tom
Strony
62--72
Opis fizyczny
Bibliogr. 57 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
autor
- Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
autor
- Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
autor
- Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
autor
- Faculty of Infrastructure and Environment, Częstochowa University of Technology, Poland
Bibliografia
- 1. Abin-Bazaine, A., Trujillo, A.C. & Olmos-Marquez, M., (2022). Adsorption Isotherms: Enlightenment of the Phenomenon of Adsorption. In: Ince, M., Ince, O.K. (eds) Wastewater Treatment. IntechOpen. DOI:10.5772/intechopen.104260
- 2. Amalina, F., Razak, A.S.A., Krishnan, S., Sulaiman, H., Zularisam, A.W. & Nasrullah, M. (2022). Biochar production techniques utilizing biomass waste-derived materials and environmental applications - A review. J. Hazard. Mater. Adv. 7, 100134. DOI:10.1016/j.hazadv.2022.100134
- 3. Barnat-Hunek, D., Góra, J., Suchorab, Z. & Łagód, G. (2018). Cement kiln dust, Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications. DOI:10.1016/B978-0-08-102156-9.00005-5
- 4. Barreira, J.C.M., Arraibi, A.A. & Ferreira, I.C.F.R. (2019). Bioactive and functional compounds in apple pomace from juice and cider manufacturing: Potential use in dermal formulations. Trends Food Sci. Technol. 90, pp. 76-87. DOI:10.1016/j.tifs.2019.05.014
- 5. Bhat, V.S., Cohen, S.M., Gordon, E.B., Wood, C.E., Cullen, J.M., Harris, M.A., Proctor, D.M. & Thompson, C.M. (2020). An adverse outcome pathway for small intestinal tumors in mice involving chronic cytotoxicity and regenerative hyperplasia: a case study with hexavalent chromium, captan, and folpet. Crit. Rev. Toxicol. 50, pp. 685-706. DOI:10.1080/10408444.2020.1823934
- 6. Borek, K., Czapik, P. & Dachowski, R. (2023). Cement Bypass Dust as an Ecological Binder Substitute in Autoclaved Silica-Lime Products. Materials (Basel). 16. DOI:10.3390/ma16010316
- 7. Buss, W., Wurzer, C., Manning, D.A.C., Rohling, E.J., Borevitz, J. & Mašek, O. (2022). Mineral-enriched biochar delivers enhanced nutrient recovery and carbon dioxide removal. Commun. Earth Environ. 3, pp. 1-11. DOI:10.1038/s43247-022-00394-w
- 8. Charmas, B., Wawrzaszek, B. & Jedynak, K. (2024). Effect of pyrolysis temperature and hydrothermal activation on structure, physicochemical, thermal and dye adsorption characteristics of the biocarbons. ChemPhysChem 25, pp. 1-8. DOI:10.1002/cphc.202300773
- 9. Charmas, B., Zięzio, M. & Jedynak, K. (2023). Assessment of the Porous Structure and Surface Chemistry of Activated Biocarbons Used for Methylene Blue Adsorption. Molecules 28. DOI:10.3390/molecules28134922
- 10. Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and Thhe Committee of the Regions - Taking sustainable use of resources forward - A Thematic Strategy on the prevention and recycling of waste {SEC(2005) 1681} {SEC(2005) 1682}
- 11. Cutillas, V., Jesús, F., Ferrer, C. & Fernández-Alba, A.R. (2021). Overcoming difficulties in the evaluation of captan and folpet residues by supercritical fluid chromatography coupled to mass spectrometry. Talanta 223, 121714. DOI:10.1016/j.talanta.2020.121714
- 12. Directive 2006/12/EC of the European Parliament and of the Council of 5 April 2006 on waste (Text with EEA relevance)
- 13. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives (Text with EEA relevance)
- 14. Document 52005DC0666 - Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions - Promoting the sustainable use of resources - Thematic Strategy on the prevention and recycling of waste {SEC(2005) 1681} {SEC(2005) 1682}. (in Polish)
- 15. El-Haggar, S.M. (2007). Sustainability of Industrial Waste Management. Sustain. Ind. Des. Waste Manag. pp. 307-369. DOI:10.1016/b978-012373623-9/50012-5
- 16. Enaime, G., Baçaoui, A., Yaacoubi, A. & Lübken, M. (2020). Biochar for wastewater treatment-conversion technologies and applications. Appl. Sci. 10. DOI:10.3390/app10103492
- 17. Environmental Protection Agancy: https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_ PC-081301_1-Sep-99.pdf
- 18. Environmental Protection Agency: https://www.epa.gov/sites/default/files/2016-09/documents/captan.pdf
- 19. European Parliament, 2023: Circular economy: definition, importance and benefits
- 20. Frydel, L., Słomkiewicz, P.M. & Szczepanik, B. (2024). The adsorption studies of phenol derivatives on halloysite-carbon adsorbents by inverse liquid chromatography. Adsorption 30, pp. 185-199. DOI:10.1007/s10450-023-00396-w
- 21. Gajda, A., Jodłowski, P., Kozieł, K., Kurowski, G., Hyjek, K., Skoczylas, N. & Pajdak, A. (2024). Adsorption of selected GHG on metal-organic frameworks in the context of accompanying thermal effects. Arch. Environ. Prot. 50, pp. 51-63. DOI:10.24425/aep.2024.152895
- 22. Gommes, C.J. & Roberts, A.P. (2018). Stochastic analysis of capillary condensation in disordered mesopores. Phys. Chem. Chem. Phys. 20, pp. 13646-13659. DOI:10.1039/C8CP01628C
- 23. Grasso, S. (2020). Extruded snacks from industrial by-products: A review. Trends Food Sci. Technol. 99, pp. 284-294. DOI:10.1016/j.tifs.2020.03.012
- 24. He, Q.K., Xu, C.L., Li, Y.P., Xu, Z.R., Luo, Y.S., Zhao, S.C., Wang, H.L., Qi, Z.Q. & Liu, Y. (2022). Captan exposure disrupts ovarian homeostasis and affects oocytes quality via mitochondrial dysfunction induced apoptosis. Chemosphere 286, 131625. DOI:10.1016/j.chemosphere.2021.131625
- 25. Kainth., S., Sharma, P. & Pandey, O.P. (2024). Green sorbents from agricultural wastes: A review of sustainable adsorption materials. Appl. Surf. Sci. Adv. 19, 100562. DOI:10.1016/j.apsadv.2023.100562
- 26. Kalina, M., Sovova, S., Svec, J., Trudicova, M., Hajzler, J., Kubikova, L. & Enev, V. (2022). The Effect of Pyrolysis Temperature and the Source Biomass on the Properties of Biochar Produced for the Agronomical Applications as the Soil Conditioner. Materials (Basel) 15. DOI:10.3390/ma15248855
- 27. Kalinowska, M., Gołebiewska, E., Zawadzka, M., Choińska, R., Koronkiewicz, K., Piasecka-Jóźwiak, K. & Bujak, M. (2023). Sustainable extraction of bioactive compound from apple pomace through lactic acid bacteria (LAB) fermentation. Sci. Rep. 13, pp. 1-16. DOI:10.1038/s41598-023-46584-0
- 28. Kane, S. & Ryan, C. (2022). Biochar from food waste as a sustainable replacement for carbon black in upcycled or compostable composites. Compos. Part C Open Access 8, 100274. DOI:10.1016/j.jcomc.2022.100274
- 29. Ke-Fa, C. (2007). Surface structure of blended coals during pyrolysis. J. Ind. Eng. Chem. 58, pp. 1798-1804.
- 30. Kim, H.C., Woo, H.E., Jeong, I., Oh, S.J., Lee, S.H. & Kim, K. (2019). Changes in Sediment Properties Caused by a Covering of Oyster Shells Pyrolyzed at a Low Temperature. J. Korean Soc. Mar. Environ. Saf. 25, pp. 74-80. DOI:10.7837/kosomes.2019.25.1.074
- 31. Lee, S.M., Lee, D., Kil, J.H., Lee, T., Song, H. & Sung Yum, W. (2023). Characteristics Analysis of Chlorine Bypass Dust and Water-washed Residue. Resour. Recycl. 32, pp. 44-51. DOI:10.7844/kirr.2023.32.5.44
- 32. Liu, X.Q., Ding, H.S., Wang, Y.Y., Liu, W.J. & Jing, H. (2016). Pyrolytic Temperature Dependent and Ash Catalyzed Formation of Sludge Char with Ultra-High Adsorption to 1-Naphthol. Environ. Sci. Technol. 50, pp. 2602-2609. DOI:10.1021/acs.est.5b04536
- 33. Lyu, F., Luiz, S.F., Azeredo, D.R.P., Cruz, A.G., Ajlouni, S. & Ranadheera, C.S. (2020). Apple pomace as a functional and healthy ingredient in food products: A review. Processes 8, pp. 1-15. DOI:10.3390/pr8030319
- 34. Martău, G.A., Teleky, B.E., Ranga, F., Pop, I.D. & Vodnar, D.C. (2021). Apple Pomace as a Sustainable Substrate in Sourdough Fermentation. Front. Microbiol. 12, pp. 1-16. DOI:10.3389/fmicb.2021.742020
- 35. Nair, R.R., Kißling, P.A., Marchanka, A., Lecinski, J., Turcios, A.E., Shamsuyeva, M., Rajendiran, N., Ganesan, S., Srinivasan, S.V., Papenbrock, J. & Weichgrebe, D. (2023). Biochar synthesis from mineral and ash-rich waste biomass, part 2: characterization of biochar and co-pyrolysis mechanism for carbon sequestration. Sustain. Environ. Res. 33. DOI:10.1186/s42834-023-00176-9
- 36. National Strategy for Reducing Food Loss and Waste and Recycling Organics, EPA (https://www.epa.gov/circulareconomy/national-strategy-reducing-food-loss-and-waste-and-recycling-organics)
- 37. Niedziński, T., Łabętowicz, J., Stępień, W. & Pęczek, T. (2023). Analysis of the Use of Biochar from Organic Waste Pyrolysis in Agriculture and Environmental Protection. J. Ecol. Eng. 24, pp. 85-98. DOI:10.12911/22998993/159347
- 38. Pires, A. & Martinho, G. (2019). Waste hierarchy index for circular economy in waste management. Waste Manag. 95, pp. 298-305. DOI:10.1016/j.wasman.2019.06.014
- 39. Qurat-ul-Ain, Shafiq, M., Capareda, S.C. & Firdaus-e-Bareen. (2021). Effect of different temperatures on the properties of pyrolysis products of Parthenium hysterophorus. J. Saudi Chem. Soc. 25, 101197. DOI:10.1016/j.jscs.2021.101197
- 40. Ren, N., Tang, Y. & Li, M. (2018). Mineral additive enhanced carbon retention and stabilization in sewage sludge-derived biochar. Process. Saf. Environ. Prot. 115, pp. 70-78. DOI:10.1016/j.psep.2017.11.006
- 41. Roik, T., Rashedi, A., Khanam, T., Chaubey, A., Balaganesan, G. & Ali, S. (2021). Structure and properties of new antifriction composites based on tool steel grinding waste. Sustain. 13, pp. 3-11. DOI:10.3390/su13168823
- 42. Sakhiya, A.K., Anand, A. & Kaushal, P. (2020). Production, activation, and applications of biochar in recent times, Biochar. Springer Singapore. DOI:10.1007/s42773-020-00047-1
- 43. Sefatlhi, K.L., Ultra, V.U., Majoni, S., Oleszek, S. & Manyiwa, T. (2024). Adsorption of nitrate and phosphate ions using ZnCl2-activated biochars from phytoremediation biomasses. Arch. Environ. Prot. 50, pp. 65-83. DOI: 10.24425/aep.2024.151687
- 44. Storck, S., Bretinger, H. & Maier, W.F. (1998). Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Appl. Catal. A Gen. 174, pp. 137-146. DOI:10.1016/S0926-860X(98)00164-1
- 45. Suárez-Garcı́a, F., Martı́nez-Alonso, A. & Tascón, J.M.D. (2002). Pyrolysis of apple pulp: chemical activation with phosphoric acid. J. Anal. Appl. Pyrolysis. 63, pp. 283-301. DOI:10.1016/S0165-2370(01)00160-7
- 46. Suliman, W., Harsh, J.B., Abu-Lail, N.I., Fortuna, A.M., Dallmeyer, I. & Garcia-Perez, M. (2016). Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass and Bioenergy 84, pp. 37-48. DOI:10.1016/j.biombioe.2015.11.010
- 47. Toncón-Leal, C.F., Villarroel-Rocha, J., Silva, M.T.P., Braga T.P. & Sapag, K. (2021). Characterization of mesoporous region by the scanning of the hysteresis loop in adsorption-desorption isotherms. Adsorption 27, pp. 1109-1122. DOI:10.1007/s10450-021-00342-8
- 48. Tamasiga, P., Miri, T., Onyeaka, H. & Hart, A. (2022). Food Waste and Circular Economy: Challenges and Opportunities. Sustain. 14. DOI:10.3390/su14169896
- 49. Tappyrova, N.I., Kravtsova, O.N., Protodyakonova, N.A., Timofeev, A.M. & Andreev, A.S. (2022). Capillary condensation hysteresis model in porous bodies. AIP Conf. Proc. 2528, 020049. DOI:10.1063/5.0106255
- 50. Tkaczewska, E. (2019). The Influence of Cement Bypass Dust on the Properties of Cement Curing Under Normal and Autoclave Conditions. Struct. Environ. 11, pp. 5-22. DOI:10.30540/sae-2019-001
- 51. Tu, P., Zhang, G., Wei, G., Li, J., Li, Y., Deng, L. & Yuan, H. (2022). Influence of pyrolysis temperature on the physicochemical properties of biochars obtained from herbaceous and woody plants. Bioresour. Bioprocess. 9. DOI:10.1186/s40643-022-00618-z
- 52. Uliasz-Bocheńczyk, A. (2019). Chemical characteristics of dust from cement kilns. Gospod. Surowcami Miner. / Miner. Resour. Manag. 35, pp. 87-102. DOI:10.24425/gsm.2019.128524
- 53. Vaiškūnaitė, R. (2024). Research of batch and fixed-bed column adsorption for phosphorus removal from wastewater using sewage sludge biochar. Arch. Environ. Prot. 50, pp. 72-81. DOI:10.24425/aep.2024.152897
- 54. Wang, J., Zeng, P., Liu, Z. & Li, Y. (2023). Manufacture of potassium chloride from cement kiln bypass dust: An industrial implementation case for transforming waste into valuable resources. Heliyon 9, e21806. DOI:10.1016/j.heliyon.2023.e21806
- 55. Zhang, S., Ji, Y., Dang, J., Zhao, J. & Chen, S. (2019). Magnetic apple pomace biochar: Simple preparation, characterization, and application for enriching Ag(I) in effluents. Sci. Total. Environ. 668, pp. 115-123. DOI:10.1016/j.scitotenv.2019.02.318
- 56. Zhang, S., Ji, Y., Du, Y., Ma, X., Lin, J. & Chen, S. (2022). Apple-pomace-based porous biochar as electrode materials for supercapacitors. Diam. Relat. Mater. 130, 109507. DOI:10.1016/j.diamond.2022.109507
- 57. Zhong, M., Huang, H., Xu, P. & Hu, J. (2023). Catalysis of Minerals in Pyrolysis Experiments. Minerals 13. DOI:10.3390/min13040515
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dbfb204a-e59e-457d-8813-460626397235
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.