PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural setting of the Čertovka landslide (Ústí nad Labem, Czech Republic) analysed by morphostructural analysis and electrical resistivity tomography

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Čertovka landslide at Vaňov south of Ústí nad Labem, Czech Republic, is developed in a steep slope of the Labe River Valley (LRV). A major episode of landsliding occurred in the first months of 1995, and the slope at Vaňov has been subjected to geological and geomorphological investigation since then. This paper presents structural setting of the Čertovka landslide based on the latest geological survey, detailed geomorphological mapping, morphostructural analysis and results of electrical resistivity tomography. The landslide was found to be initiated at the boundary between Late Eocene to Oligocene basaltic lavas above and volcaniclastics below, with bedding dipping against the slope (anaclinal slope). The underlying volcaniclastics show tendency to argillization and have a much lower rock strength, which acts as an important factor of slope instability at the site. The Čertovka landslide is a complex slope deformation consisting of several landslides and flowslides, with boulder streams merging into a boulder accumulation further downslope. The headscarp area of the landslide developed at one of the structural levels built by basaltic lavas and forming step-like morphology of the valley slope. The headscarp coincides with the course of a regional E–W-striking Vaňov Fault which underwent multiple tectonic history and is associated with a dense fracture system including smooth slickensides on the headscarp. Structural observations combined with detailed knowledge of the anatomy of the landslide based on airborne data, surface data and geophysical data permitted to conclude on structural controls of landsliding and predict future evolution of the slope deformation. Future landsliding will be initiated at structural levels of basaltic rocks, with the headscarps developed along fractures parallel to the Vaňov Fault. The probable gradual retreat of headscarps at the individual structural levels along the slope profile denotes a retrogressive landslide style.
Rocznik
Strony
85--98
Opis fizyczny
Bibliogr. 56 poz., rys., wykr.
Twórcy
autor
  • J. E. Purkynì University in Ústí nad Labem, Department of Geography, Faculty of Science, Èeské mládeže 8, 400 96 Ústí nad Labem, Czech Republic
autor
  • Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V Holešovièkách 41, 182 09 Praha 8, Czech Republic
  • Department of Physical Geography and Geoecology, Faculty of Science, Charles University in Prague, Albertov 6, 128 41, Praha 2, Czech Republic
autor
  • Institute of Geophysics, Academy of Sciences of the Czech Republic, Boèní II/1401, 141 31 Praha 4, Czech Republic
  • Institute of Geology, Academy of Sciences of the Czech Republic, Rozvojová 269, 165 00 Praha 6 – Lysolaje, Czech Republic
autor
  • Institute of Geology, Academy of Sciences of the Czech Republic, Rozvojová 269, 165 00 Praha 6 – Lysolaje, Czech Republic
Bibliografia
  • 1. Adamovič J., Coubal M. (1999) Intrusive geometries and Cenozoic stress history of the northern part of the Bohemian Massif. Geolines, 9: 5-14.
  • 2. Apparao A., Roy A. (1973) Field results for direct-current resistivity profiling with two-electrode array. Geoexploration, 11: 21-44.
  • 3. ASTM (1987) Standard Test Methods for the Slake Dutabili ty of Shales and Similar Weak Rocks. American Society for Testing and Materials (ASTM). Standard D4644-87. DOI: 10.1520/D4644-08
  • 4. Balatka B., Kalvoda J. (1995) Vývoj údolí Labe v Děčínské vrchovině (in Czech). Sborník České geografické společnosti, 100: 173-192.
  • 5. Borrelli L., Greco R., Gullř G. (2006) Weatheri ng grade of rock masses as a predisposing factor to slope instabilities: recon- naissance and control procedures. Geomorphology, 87: 158-175.
  • 6. Burda J., Cajz V., Kadlec J., Moravcová O., Šebesta J. (1998) Nebezpečí sesuvů v údolí Labe - okres Ústí nad Labem (02-41 Ústí nad Labem) (in Czech). Zprávy o geologických výzkumech v roce 1997: 130-133.
  • 7. Burda J., Hartvich F., Valenta J., Smítka V., Rybář J. (2013) Climate-induced landslide reactivation at the edge of the Most Basin (Czech Republic) - progress towards better landslide prediction. Natural Hazards and Earth System Sciences, 13: 361-374.
  • 8. Cajz V. (2000) Proposal of lithostratigraphy for the České středohoří Mts. volcanics. Bulletin of Czech Geological Survey, 75: 7-16.
  • 9. Cajz V., Valečka J. (2010) Tectonic setting of the Ohře/Eger Graben between the central part of the České středohoří Mts. and the Most Basin, a regional study. Journal of Geosciences, 55: 201-215.
  • 10. Cajz V., Hroch Z., Šebesta J. (1995) Nálezová zpráva - sesuv Čertovka, katastr Vaňov 02-41-17, únor 1995 (in Czech). Czech Geological Survey, Praha.
  • 11. Cajz V., Adamovič J., Rapprich V., Valigurský L. (2004) Newly identified faults inside the volcanic complex of the České středohoří Mts., Ohře/Eger Graben, North Bohemia. Acta Geodynamica et Geomaterialia, 1: 213-222.
  • 12. Čech S., ed. (1991) Vysvětlivky k základní geologické mapě České republiky 1:25,000, počet listů 02-411 Ústí nad Labem (in Czech). Archive of the Czech Geological Institute, Praha.
  • 13. Cílek V., Sýkorová I., Melichárková E., Melka K. (2000) Sedimentární vložky povrchového vulkanismu středohorského komplexu v okolí Čeřeniště a jejich vliv na stabilitu svahů (in Czech). Zprávy o geologických výzkumech v roce 1999: 1 83-1 86.
  • 14. Cruden D.M., Varnes D.J. (1996) Landslide types and processes. In: Landslides: investigation and mitigation (eds. A.R. Turner and R.L. Schuster): 36-72. Special Report 247, Transportation Research Board, Naional Research Council, National Academy Press, Washington D.C.
  • 15. Čúzk (2013) Shaded relief of the Basic map of the Czech Republic based on airborne laser scanning data. Český ústav zeměměřičský a katastrální, published at http://geoportal.cuzk.cz/geoprohlizec
  • 16. Dužár J., Raška P., Cajz V. (2012) Geomorfologické projevy mladladě kenozoické tektoniky v sz.části Milešovského středohoří (in Czech). Zprávy o geologických výzkumech v roce 2011: 75-81.
  • 17. Goudie A.S. (2006) The Schmidt hammer in geomorphological research. Progress in Physical Geography, 30: 703-718.
  • 18. Grelle G., Revellino P., Donnarumma A., Guadagno F.M. (2011) Bedding control on landslides: a methodological approach for computer-aided mapping analysis. Natural Hazards and Earth System Sciences, 11: 1395-1409.
  • 19. Hartvich F., Mentlík P. (2010) Slope development reconstruction at two sites in the Bohemian Forest Mountains. Earth Surface Processes and Landforms, 35: 373-389.
  • 20. Hartvich F., Valenta J. (2011) The identifcation of faults using morphostructural and geophysical methods: a case study from Strašín cave site. Acta Geodynamica et Geomaterialia, 8: 425-441.
  • 21. Hartvich F., Valenta J. (2013) Tracing an intra-montane fault: an interdisciplinary approach. Surveys in Geophysics, 34: 317-347.
  • 22. Hoek E., Brown E.T. (1997) Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences, 34: 1165-1186.
  • 23. ISRM (1978) International Society for Rock Mechanics - suggested methods for the quantitative description of discontinuities in rock masses. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 15: 319-368.
  • 24. Klimeš J. (2002) Analysis of the causative factors of landslides trig- gered by the extreme rainfalls in 1997, Vsetín District, Czechia. (in Czech with English summary). Geografie - sborník ČGS, 107: 40-49.
  • 25. Klimeš J. (2009) Implications of geomorphological research for recent and prehistoric avalanches and related hazards at Huascaran, Peru. Natural Hazards, 50: 193-209.
  • 26. Král V. (1966) Geomorfologie střední části Českého středohoří (in Czech). Rozpravy Československé akademie věd, řada matematických a přírodních věd, 78: 1-65.
  • 27. Kurka J., Čechová E. (1997) Vaňov - zhodnocení sesuvu Čertovka (in Czech). AZ Consult. Ústí nad Labem.
  • 28. Kurka J., Smolík R., Zavoral J. (1995) Vaňov - sesuv, závěrečná zpráva inženýrsko-geologického průzkumu a geotechnického kontrolního sledování (in Czech). AZ Consult, Ústí nad Labem.
  • 29. Kycl P., ed. (2003) Nebezpečí svahových pohybů v jv.části Českého Středohoří na území okresu Litoměřice (in Czech). Czech Geological Survey, Praha.
  • 30. Kycl P., Rapprich V., Radon M. (2012) Geological setting of the Vaňov landslide (in Czech with English summary). Zprávy o geologických výzkumech v roce 2011: 82-86.
  • 31. Loke M.H. (2012) Tutorial: 2-D and 3-D Electrical Imaging Surveys. Geotomo Software, Malaysia. www.geotomo.com
  • 32. Málek J., Fischer T., Coubal M. (1991) Compuiaiion of regional stress tensor from small scale tectonic data. Publications of the Institute of Geophysics, Polish Academy of Sciences, M-15: 77-92.
  • 33. Margielewski W. (2006) Structural control and types of movements of rock mass in anisotropic rocks: case studies in the Polish Flysch Carpathians. Geomorphology, 77: 47-68.
  • 34. Marinos P., Hoek E. (2000) GSI: a geologically friendly tool for rock mass strength es ti ma tion. Pro ceed ings of the GEOENG 2000 Conference, Melbourne.
  • 35. Meentemeyer R., Moody A.W. (2000) Automated mapping of conformity between topographic and geological features. Computers and Geosciences, 26: 815-829.
  • 36. Pánek T., Šilhán K., Tábořík P., Hradecký J., Smolková V., Lenart J., Brázdil R., Kašičková L., Pazdur A. (2011) Catastrophic slope failure and its origins: case of the May 2010 Girová Mountain long-runout rockslide (Czech Republic). Geomorphology, 130: 352-364.
  • 37. Pantelidis L. (2009) Rock slope stability assessment through rock mass classification systems. International Journal of Rock Mechanics and Mining Sciences, 46: 315-325.
  • 38. Pyzsková R. (2012) Elektrická odporová tomografie odlučné oblasti katastrofického sesuvu na Girové (in Czech). M.Sc. thesis. Ostrava, University in Ostrava.
  • 39. Raška P. (2010) Quaiernary morphogenesis of the Elbe valley in ceniral part of the České středohoří Mts.: new data from GIS analyses and relative dating of stony accumulations and slope depressions (in Czech with English summary). Zprávy o geologických výzkumech v roce 2009: 115-119.
  • 40. Raška P., Klimeš J., Dubišar J. (2013) Using local archive sources to reconstruct historical landslide occurrence in selected urban regions of the Czech Republic: examples from regions with different historical development. Land Degradation and Development, DOI: 10.1002/ldr.2192
  • 41. Roering J.J., Kirchner J.W., Dietrich W.E. (2005) Characterizing structural and lithologic Controls on deep-seated landsliding: implications for topographic relief and landscape evolution in the Oregon Coast Range, USA. GSA Bulletin, 117: 654-668.
  • 42. Rybář J., Stemberk J., Suchý J. (2000a) Aptitude of slopes stability failure in the neovolcanite region of České Středohoří Mountains (Czech Republic). In: Landslides in Research, Theory and Practice (eds. E. Bromhead, N. Dixon and M.L. Ibsen): 1285-1288. Thomas Telford Publications, London.
  • 43. Rybář J., Vilímek V., Cílek V. (2000b) Process analysis of deep slope failures in České středohoří neovolcanites. Acta Montana, IRSM AV CR, Ser. AB, 8: 39-46.
  • 44. Scheidegger A.E. (1998) Tectonic predesign of mass movements, with examples from the Chinese Himalaya. Geomorphology, 26: 37-46.
  • 45. Schrott L., Sass O. (2008) Application of field geophysics in geomorphology: advances and limitations exemplified by case studies. Geomorphology, 93: 55-73.
  • 46. Sedlák J., Glisníková V. (2008) The second phase of Čertovka- landslide (in Czech with English summary). In: Stavební konstrukce z pohledu geotechniky: 183-187. AN CERM Brno.
  • 47. Selby M.J. (1980) A rock mass strength classification for geomorphic purposes: with test from Antarctica and New Zealand. Zeitschrift für Geomorphologie, 24: 31-51.
  • 48. Skácelová Z., Rapprich V., Valenta J., Hartvich F., Šrámek J., Radon M., Gaždová R., Nováková L., Kolínský P., Pésckay Z. (2010) Geophysical research on structure of partly eroded maar volcanoes: Miocene Hnojnice and Oligocene Rychnov volcanoes (northern Czech Republic). Journal of Geosciences, 55: 299-311.
  • 49. Stemberk J., Novotný J. (1996) Supplementary study of the landslide area in the Vaňov vicinity (in Czech with English summary). Studie 330/674/55. Praha, Ústav Struktury a Mechaniky Hornin AV ČR.
  • 50. Suchý J. (2000) Svahové deformace labského údolí v Českém středohoří (in Czech). Ph.D. thesis, MS, Praha, PřF UK.
  • 51. Synowiec G. (1999) Rock mass strength assessment for geomorphological purposes and its applicat ion to sandstone slopes in the Stołowe Mountains (in Polish with English summary). Czasopismo Geograficzne, 70: 351-361.
  • 52. Šebesta J., ed. (1997) Landslide hazard in the SE part of the České středohoří Mts. in the Ústí nad Labem disrict area (in Czech with English summary). Czech Geological Survey, Praha.
  • 53. Šebesta J., ed. (2000) Landslide hazard in the SE part of the České středohoří Mts. in the Děčín district area (in Czech with English summary). Czech Geological Survey, Praha.
  • 54. Travelletti J., Malet J.-P., Samyn K., Grandjean G., Jaboyedoff M. (2013) Control of landslide retrogression by discontinuities: evidence by the integration of airborne- and ground-based geophysical information. Landslides, 10: 37-54.
  • 55. Ulrych J., Dostal J., Adamovič J., Jelínek E., Špaček P., Hegner E., Balogh K. (2011) Recurrent Cenozoic volcanicactivity in the Bohemian Massif (Czech Republic). Lithos, 123: 133-144.
  • 56. Viles H., Vilímek V., Přikryl R., Zvelebil J. (2007) Intensity of weathering as a relative exposure age indicator of mass movements at Machu Picchu. In: Geomorphological Variations (eds. S.A. Goudie and J. Kalvoda): 127-142. P3K, Prague.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dbf48c84-9c9c-41e7-b207-470f8777198b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.