PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Eco-friendly modified weight SIFCON production: The role of glass waste and hybrid fibers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
SIFCON is a type of high-performance concrete distinguished by its exceptional strength-to-density ratio. This study achieved significant density reductions by incorporating single and hybrid fibers to develop modified-weight SIFCON. However, the production and use of SIFCON involve substantial amounts of cement and fine aggregates, which have environmental repercussions. Substituting cement and fine aggregates with glass waste contributes to enhancing environmental sustainability by lowering cement consumption, thereby reducing CO2 emissions associated with its production. Eco-friendly SIFCON was evaluated through three tests: compressive strength, ultrasonic pulse velocity, and density. These tests were conducted on six different mixes, all containing a 4% fiber volume fraction in single and hybrid configurations, along with a reference mix. Among the formulations, the hybrid combination of 1% basalt fibers, 2% micro steel fibers, and 1% polypropylene fibers demonstrated the best performance in compressive strength and ultrasonic pulse velocity. On the other hand, the use of polypropylene fibers alone resulted in the decrease in density, the decreases of 0.73% after 7 days, 1.1% after 28 days, and 0.76% after 90 days. Meanwhile, the hybrid composition of 1% basalt fibers, 1% micro steel fibers, and 2% polypropylene fibers showed the lowest density growth in hybrid mixes, with increases of 2.5% at 7 days, 2% at 28 days, and 2.4% at 90 days.
Słowa kluczowe
Rocznik
Strony
54--64
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Department of Civil Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
  • Department of Civil Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
Bibliografia
  • 1. Abdulhameed, A. A., Al-Zuhairi, A. H., Al Zaidee, S. R., Hanoon, A. N., Al Zand, A. W., Hason, M. M., & Abdulhameed, H. A. (2022). The behaviour of hybrid fiber-reinforced concrete elements: A new stress-strain model using an evolutionary approach. Applied Sciences, 12(4), 2245. https://doi.org/10.3390/app12042245.
  • 2. Abdullah, A. N., & Fawzi, N. M. (2023). The Effect of Using Different Aspect Ratios of Sustainable Copper Fiber on Some Mechanical Properties of High-Strength Green Concrete. Journal of Engineering, 29(11), 167-183.
  • 3. Abdullah, A. N., & Fawzi, N. M. (2024). The Effect of Using Sustainable Copper Fiber on Some Mechanical Properties of High Strength Green Concrete. Journal of Engineering, 30(04), 72-86.
  • 4. Abdul Rehman, M. (2024). Some properties of SIFCON made by reactive powder. Al-Rafidain Journal of Engineering Sciences, 256-264.
  • 5. Algın, Z., Özbebek, E., Gerginci, S., & Mermerdaş, K. (2022). Effects of Basalt Fibre Utilization on Durability and Mechanical Properties of SIFCON. Karaelmas Fen ve Mühendislik Dergisi, 12(2), 231-241.
  • 6. Ali, A. S., & Riyadh, Z. (2018). Experimental and Numerical Study on the Effects of Size and type of Steel Fibers on the (SIFCON) Concrete Specimens. International Journal of Applied Engineering Research, 13(2), 1344-1353.
  • 7. Al-Ridha, A. S., Ibrahim, A. K., Al-Taweel, H. M., & Dheyab, L. S. (2019, May). Effect of steel fiber on ultrasonic pulse velocity and mechanical properties of self-compact light weight concrete. In IOP Conference Series: Materials Science and Engineering (Vol. 518, No. 2, p. 022017). IOP Publishing.https://doi:10.1088/1757-899X/518/2/022017.
  • 8. ASTM C 597. Standard Test Method for Pulse Velocity through Concrete; American Society for Testing and Materials: West Conshohocken, PA, USA, 2016.
  • 9. ASTM C494/C494M, 2019. Standard Specification for Chemical Admixtures for Concrete,” Annual book of ASTM standards,2019. ASTM International, 04, pp. 1–9.
  • 10. ASTM C618, 2015. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete, ASTM International, pp. 1–4.
  • 11. ASTM C642 A. Standard Test Method for Density. Absorption and Voids in Hardened Concrete. West Conshohocken (PA): ASTM International;2013.
  • 12. Bentur, A., & Mindess, S. (2006). Fibre reinforced cementitious composites. Crc Press.
  • 13. BS EN 12390-4. (2000). Testing hardened concrete Part 4 : Compressive strength Specification for testing machines. BRITISH STANDARD.
  • 14. D.R Lankard, Concrete International,.6, No.12, pp.44-4,(1984)
  • 15. Dagar, K. (2012). Slurry infiltrated fibrous concrete (SIFCON). International Journal of Applied Engineering and Technology, 2(2), 99-100.
  • 16. Farnam, Y., Moosavi, M., Shekarchi, M., Babanajad, S. K., & Bagherzadeh, A. (2010). Behaviour of slurry infiltrated fibre concrete (SIFCON) under triaxial compression. Cement and Concrete Research, 40(11), 1571-1581. https://doi.org/10.1016/j.cemconres.2010.06.009.
  • 17. Gahoi, K., & Kansal, R. (2015). Effect of waste glass powder on properties of concrete: A literature review. Int. J. Sci. Res, 6-391.
  • 18. Hamed, H. A., & Abass, Z. W. (2022). effect of steel fiber proportion on sifcon mechanical properties. Journal of Engineering and Sustainable Development, 26(1), 55-63.
  • 19. He, D., Wu, M., & Jie, P. (2017, December). Study on mechanical properties of hybrid fiber reinforced concrete. In IOP Conference Series: Earth and Environmental Science (Vol. 100, No. 1, p. 012111). IOP Publishing.
  • 20. Hendi, S. I., & Aljalawi, N. M. F. (2024). Behavior of Reactive Powder Concrete reinforced with Hybrid Fibers containing Sustainable Materials. Engineering, Technology & Applied Science Research, 14(3), 13878-13882. https://doi.org/10.48084/etasr.7167.
  • 21. Hussain, Z. A., & Aljalawi, N. (2022). Effect of sustainable glass powder on the properties of reactive powder concrete with polypropylene fibers. Engineering, Technology & Applied Science Research, 12(2), 8388-8392. https://doi.org/10.48084/etasr.4750.
  • 22. Ibrahim, Y. A., Hasan, A. H., & Maroof, N. R. (2019). Effects of polypropylene fiber content on strength and workability properties of concrete. Polytechnic Journal, 9(1), 3. https://doi.org/10.25156/ptj.v9n1y2019.pp7-12
  • 23. Indhirani, D., Campus, C., IIakkiya, N., Sellakannu, N., & Vijayakumar, M. Strength properties of sifcon using of artificial fibers.
  • 24. IQS 45, 1984. Iraqi Standard Specification No.45, Aggregate from Natural Sources for Concrete, Central Agency for Standardization and Quality Control. Baghdad, Iraq, 1984, p. 17.
  • 25. IQS 5, 2019. Portland cement specialities Central Organization for Standardization and Quality Control. Baghdad, Iraq.Iraqi Standard Specifications.
  • 26. IQS No. 1703, 2018. Water Used for Concrete and Mortar. Baghdad, Iraq: Central Organization for Standardization and Quality Control. Iraqi Standard Specifications
  • 27. Islam, G. S., Rahman, M., & Kazi, N. (2017). Waste glass powder as partial replacement of cement for sustainable concrete practice. International Journal of Sustainable Built Environment, 6(1), 37-44. https://doi.org/10.1016/j.ijsbe.2016.10.005.
  • 28. Jerry, A. H., & Fawzi, N. M. (2022). The effect of using polyolefin fiber on some properties of slurryinfiltrated fibrous concrete. Journal of the Mechanical Behavior of Materials, 31(1), 170-176. https://doi.org/10.1515/jmbm-2022-0020.
  • 29. Jerry, A. H., & Fawzi, N. M. (2023). The Effect of Type of Fiber in Density and Splitting Tensile Strength of SIFCON. Journal of Engineering, 29(5), 106-114.
  • 30. Lepech, M. D., Li, V. C., Robertson, R. E., & Keoleian, G. A. (2008). Design of green engineered cementitious composites for improved sustainability. ACI Materials Journal, 105(6), 567-575.
  • 31. Naaman, A. E., & Reinhardt, H. W. (2003). High performance fiber reinforced cement composites HPFRCC-4: international RILEM workshop: Ann Arbor, Michigan, June 16–18, 2003. Materials and Structures, 36, 710-712.
  • 32. Najeeb, A. M., & Fawzi, N. M. (2021). The effect of using plastic strips and sheets on the properties of slurry infiltrated fiber concrete. Engineering, Technology & Applied Science Research, 11(6), 7800-7804. https://doi.org/10.48084/etasr.4477.
  • 33. Najeeb, A. M., & Fawzi, N. M. (2022). Effect of Distributing Steel Fibers on Some Properties of Slurry Infiltrated Fiber Concrete. Journal of Engineering, 28(4), 64-76.
  • 34. Naser, F. H., & Abeer, S. Z. (2020, March). Flexural behaviour of modified weight SIFCON using combination of different types of fibres. In IOP Conference Series: Materials Science and Engineering (Vol. 745, No. 1, p. 012178). IOP Publishing. doi:10.1088/1757-899X/745/1/012178.
  • 35. Song, P. S., & Hwang, S. (2004). Mechanical properties of high-strength steel fiber-reinforced concrete. Construction and Building Materials, 18(9), 669-673.
  • 36. Thomas, A. A., & Mathews, J. (2014). Strength and behaviour of SIFCON with different types of fibers. International Journal of Civil Engineering and Technology, 5(12), 25-30.
  • 37. Vijayakumar, M., & Kumar, P. D. (2017). Study on strength properties of sifcon. International Research Journal of Engineering and Technology (IRJET), 4(1), 235-238.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dbf1f47a-eb8c-400f-9fdb-6270783eb573
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.