PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Examination of energy damping behavior of fiberglass reinforced sandwich structures with extruded polystyrene core material

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Composite materials are defined as new materials formed by combining two or more materials that do not mix, leveraging the best properties of each constituent. Composite materials are used in important industrial sectors such as aerospace and automotive due to their superior properties. In this study, XPS (extruded polystyrene) polymer foam was utilized as the core material. Glass fibers were combined with resin in a total of eight and twelve layers and applied to both the top and bottom of the core structure. Production involved both manual laying and vacuum bagging methods. Two types of glass fiber, weighing 200 g/m2 and 300 g/m2 , were employed. After production, the composites were cut to standardized dimensions, followed by three-point bending and low-speed impact tests. Impact experiments were conducted with a constant energy of 50 J. Results showed that the 200 g/m2 glass fiber composites experienced perforation in the eight-layer samples and rebound in the twelve-layer samples. Although greater deformation was observed in the impact tests of the 300 g/m2 glass fiber composites in the eight-layer samples compared to the twelve-layer samples, a rebound occurred in both. In three-point bending tests, the bending strength increased as the number of layers increased, and at the same number of layers, composites with 300 g/m2 properties showed higher strength than 200 g/m2 composites.
Rocznik
Strony
art. no. e153430
Opis fizyczny
Bibliogr. 46 poz., fot., rys., tab., wykr.
Twórcy
  • Afyon Kocatepe University, Faculty of Technology, Department of Automotive Engineering, Afyon, Turkey
  • TOFAS Turkish Automobile Factories R&D Center, Bursa, Turkey
  • Afyon Kocatepe University, Faculty of Technology, Department of Automotive Engineering, Afyon, Turkey
Bibliografia
  • [1] C. Migliaresi and A. Pegoretti, “Fundamentals of Polymeric Composite Materials,” in Integrated Biomaterials Science, Springer, Boston, 2022, pp. 69–117, doi: 10.1007/0-306-47583-9_3.
  • [2] S. Sharma, P. Sudhakara, S. Nijjar, S. Saini, and G. Singh, “Recent Progress of Composite Materials in various Novel Engineering Applications,” Mater. Today Proc., vol. 5, no. 14, pp. 28195–28202, Jan. 2018, doi: 10.1016/J.MATPR.2018.10.063.
  • [3] D.K. Rajak, P.H. Wagh, and E. Linul, “Manufacturing Technologies of Carbon/Glass Fiber-Reinforced Polymer Composites and Their Properties: A Review,” Polymers, vol. 13, no. 21, p. 3721, Oct. 2021, doi: 10.3390/POLYM13213721.
  • [4] I. Yavuz, E. Simsir, and B. Senol, “Investigation of mechanical behavior of glass fiber reinforced extruded polystyrene core material composites,” RSC Adv., vol. 14, no. 19, pp. 13311–13320, Apr. 2024, doi: 10.1039/D4RA01740D.
  • [5] T. Ramakrishnan et al., “Study of Numerous Resins Used in Polymer Matrix Composite Materials,” Adv. Mater. Sci. Eng., vol. 2022, Jan. 2022, doi: 10.1155/2022/1088926.
  • [6] M. Nodehi, “Epoxy, polyester and vinyl ester based polimer concrete: a review,” Innov. Infrastruct. Solut., vol. 7, no. 1, pp. 1–24, Oct. 2021, doi: 10.1007/S41062-021-00661-3.
  • [7] S. Tayde, A. Satdive, B. Toksha, and A. Chatterjee, “Polyester Resins and Their Use as Matrix Material in Polymer Composites: An Overview,” in Polyester-Based Biocomposites, Jan. 2023, pp. 1–23, doi: 10.1201/9781003270980-1.
  • [8] H. Sharma et al., “Critical review on advancements on the fiber-reinforced composites: Role of fiber/matrix modification on the performance of the fibrous composites,” J. Mater. Res. Technol., vol. 26, pp. 2975–3002, Sep. 2023, doi: 10.1016/J.JMRT.2023.08.036.
  • [9] O. Çelik, A. Yaşar, and B. Karaçor, “Properties of basalt/aramid fiber reinforced hybrid composites compared to carbon fiber composites,” Polym. Compos., vol. 44, no. 6, pp. 3509–3521, Jun. 2023, doi: 10.1002/PC.27339.
  • [10] M.A. Karim, M.Z. Abdullah, A.F. Deifalla, M. Azab, and A. Waqar, “An assessment of the processing parameters and application of fibre-reinforced polymers (FRPs) in the petroleum and natural gas industries: A review,” Results Eng., vol. 18, p. 101091, Jun. 2023, doi: 10.1016/J.RINENG.2023.101091.
  • [11] Ş. Ursache, C. Cerbu, and A. Hadăr, “Characteristics of Carbon and Kevlar Fibres, Their Composites and Structural Applications in Civil Engineering – A Review,” Polymers, vol. 16, no. 1, p. 127, Dec. 2023, doi: 10.3390/POLYM16010127.
  • [12] M. Syduzzaman, S. Sultana Rumi, F. Faiza Fahmi, M. Akter, and R. Begum Dina, “Mapping the recent advancements in bast fiber reinforced biocomposites: A review on fiber modifications, mechanical properties, and their applications,” Results Mater., vol. 20, p. 100448, Dec. 2023, doi: 10.1016/J.RINMA.2023.100448.
  • [13] X. Jin et al., “Synergistic reinforcement and multiscaled design of lightweight heat protection and insulation integrated composite with outstanding high-temperature resistance up to 2500°C,” Compos. Sci. Technol., vol. 232, p. 109878, Feb. 2023, doi: 10.1016/J.COMPSCITECH.2022.109878.
  • [14] M. Zhou, S. Tan, J. Wang, Y. Wu, L. Liang, and G. Ji, “‘Three-in-One’ Multi-Scale Structural Design of Carbon Fiber-Based Composites for Personal Electromagnetic Protection and Thermal Management,” Nanomicro Lett., vol. 15, no. 1, pp. 1–17, Dec. 2023, doi: 10.1007/S40820-023-01144-Z/FIGURES/7.
  • [15] P. Guo, W. Meng, M. Xu, V.C. Li, and Y. Bao, “Predicting mechanical properties of high-performance fiber-reinforced cementitious composites by integrating micromechanics and machine learning,” Materials, vol. 14, no. 12, p. 3143, Jun. 2021, doi: 10.3390/ma14123143.
  • [16] A. Lotfi, H. Li, D.V. Dao, and G. Prusty, “Natural fiber–reinforced composites: A review on material, manufacturing, and machinability,” J. Thermoplast. Compos. Mater., vol. 34, no. 2, pp. 238–284, Feb. 2021, doi: 10.1177/0892705719844546.
  • [17] C. Soutis, “Aerospace engineering requirements in building with composites,” in Polymer Composites in the Aerospace Industry, Jan. 2020, pp. 3–22, doi: 10.1016/B978-0-08-102679-3.00001-0.
  • [18] M. Sreejith and R.S. Rajeev, “Fiber reinforced composites for aerospace and sports applications,” in Fiber Reinforced Composites: Constituents, Compatibility Perspectives and Applications, Jan. 2021, pp. 821–859, doi: 10.1016/B978-0-12-821090-1.00023-5.
  • [19] D.K. Rajak, D.D. Pagar, A. Behera, and P.L. Menezes, “Role of Composite Materials in Automotive Sector: Potential Applications,” in Energy, Environment, and Sustainability, 2022, pp. 193–217, doi: 10.1007/978-981-16-8337-4_10/TABLES/2.
  • [20] M.K. Huda and I. Widiastuti, “Natural Fiber Reinforced Polymer in Automotive Application: A Systematic Literature Review,” J. Phys. Conf. Ser., vol. 1808, no. 1, p. 012015, Mar. 2021, doi: 10.1088/1742-6596/1808/1/012015.
  • [21] M. Akter, M.H. Uddin, H.R. Anik, “Plant fiber-reinforced polymer composites: a review on modification, fabrication, properties, and applications,” Polym. Bull., vol. 81, pp. 1–85, 2024, doi: 10.1007/s00289-023-04733-5.
  • [22] A.A. Musa and A.P. Onwualu, “Potential of lignocellulosic fiber reinforced polymer composites for automobile parts production: Current knowledge, research needs, and future direction,” Heliyon, vol. 10, p. 24683, 2024, doi: 10.1016/j.heliyon.2024.e24683.
  • [23] Y. Chen and R. Das, “A review on manufacture of polymeric foam cores for sandwich structures of complex shape in automotive applications,” J. Sandw. Struct. Mater., vol. 24, no. 1, pp. 789–819, Jan. 2022, doi: 10.1177/10996362211030564.
  • [24] X. Yang, F. Gu, and X. Chen, “Performance Improvement of Carbon Fiber Reinforced Epoxy Composite Sports Equipment,” Key Eng. Mater., vol. 871, pp. 228–233, 2021, doi: 10.4028/WWW.SCIENTIFIC.NET/KEM.871.228.
  • [25] X. Zhou and W. Wu, “Discuss on Preparation Method of Composite Sports Equipment Based on Stretchable Nanofiber Fabric,” Integr. Ferroelectr., vol. 240, no. 4–5, pp. 724–743, 2024, doi: 10.1080/10584587.2024.2325871.
  • [26] B. Karacor and M. Ozcanli, “Examination of Fiber Reinforced Composite Materials,” Gazi Univ. J. Sci., vol. 36, no. 1, pp. 301–320, Mar. 2023, doi: 10.35378/GUJS.967913.
  • [27] M.H. Amirhafizan, M.Y. Yuhazri, H.M. Umarfaruq, S.T.W. Lau, A.M. Kamarul, and A.J. Zulfikar, “Laminated Jute and Glass Fibre Reinforced Composite for Repairing Concrete Through Wrapping Technique,” Int. J. Integr. Eng., vol. 15, no. 1, pp. 1–8, Apr. 2023, doi: 10.30880/ijie.2023.15.01.001.
  • [28] R.V. Patel, A. Yadav, and J. Winczek, “Physical, Mechanical, and Thermal Properties of Natural Fiber-Reinforced Epoxy Composites for Construction and Automotive Applications,” Appl. Sci., vol. 13, no. 8, p. 5126, Apr. 2023, doi: 10.3390/APP13085126.
  • [29] Y. Wang, A.Y. Li, S.H. Zhang, B.B. Guo, and D.T. Niu, “A review on new methods of recycling waste carbon fiber and its application in construction and industry,” Constr. Build. Mater., vol. 367, p. 130301, Feb. 2023, doi: 10.1016/J.CONBUILDMAT.2023.130301.
  • [30] T. Güler, E. Demirci, A.R. Yildiz, and U. Yavuz, “Lightweight design of an automobile hinge component using glass fiber polyamide composites,” Mater. Test., vol. 60, no. 3, pp. 306–310, Mar. 2018, doi: 10.3139/120.111152.
  • [31] M.U. Erdaş, B.S. Yildiz, and A.R. Yildiz, “Crash performance of a novel bio-inspired energy absorber produced by additive manufacturing using PLA and ABS materials,” Mater. Test., vol. 66, no. 5, pp. 696–704, May 2024, doi: 10.1515/MT-2023-0384.
  • [32] A. Jasti and S. Biswas, “Effect of ocean water absorption on flexural properties of Cannabis sativa L. hemp fibre reinforced polymer composites for marine applications,” Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., vol. 237, no. 17, pp. 3894–3907, Jan. 2023, doi: 10.1177/09544062231152180.
  • [33] H. Abdollahiparsa, A. Shahmirzaloo, P. Teuffel, and R. Blok, “A review of recent developments in structural applications of natural fiber-Reinforced composites (NFRCs),” Compos. Adv. Mater., vol. 32, no. 263498332211475, Mar. 2023, doi: 10.1177/26349833221147540.
  • [34] G. Demircan, M. Kisa, M. Ozen, A. Acikgoz, Y. Işıker, and E. Aytar, “Nano-gelcoat application of glass fiber reinforced polimer composites for marine application: Structural, mechanical, and thermal analysis,” Mar. Pollut. Bull., vol. 194, p. 115412, Sep. 2023, doi: 10.1016/J.MARPOLBUL.2023.115412.
  • [35] O. El Hawary, L. Boccarusso, M.P. Ansell, M. Durante, and F. Pinto, “An Overview of Natural Fiber Composites for Marine Applications,” J. Mar. Sci. Eng., vol. 11, no. 5, p. 1076, May 2023. doi: 10.3390/jmse11051076.
  • [36] X.Y. Wei, J. Xiong, J. Wang, and W. Xu, “New advances in fiber-reinforced composite honeycomb materials,” Sci. China Technol. Sci., vol. 63, no. 8, pp. 1348–1370, Aug. 2020, doi: 10.1007/S11431-020-1650-9.
  • [37] H. Palkowski, O.A. Sokolova, and A. Carradò, “Sandwich Materials,” Encyclopedia of Automotive Engineering, Dec. 2013, pp. 1–17, doi: 10.1002/9781118354179.AUTO163.
  • [38] Q. Ma, M.R.M. Rejab, J.P. Siregar, and Z. Guan, “A review of the recent trends on core structures and impact response of sandwich panels,” J. Compos. Mater., vol. 55, no. 18, pp. 2513–2555, Aug. 2021, doi: 10.1007/978-94-007-5329-76.
  • [39] T. Khan, V. Acar, M.R. Aydin, B. Hülagü, H. Akbulut, and M.Ö. Seydibeyoğlu, “A review on recent advances in sandwich structures based on polyurethane foam cores,” Polym. Compos., vol. 41, no. 6, pp. 2355–2400, Jun. 2020, doi: 10.1002/PC.25543.
  • [40] W. Ma and K. Feichtinger, “Rigid Structural Foam and Foam-Cored Sandwich Composites,” in Polymeric Foams, S-T. Lee, Ed., Tylor & Francis Group, Nov. 2016, pp. 273–332, doi: 10.1201/9781315369365-17.
  • [41] E.R. Fotsing, C. Leclerc, M. Sola, A. Ross, and E. Ruiz, ‘ ‘Mechanical properties of composite sandwich structures with core or face sheet discontinuities,” Compos. B Eng., vol. 88, pp. 229–239, Mar. 2016, doi: 10.1016/J.COMPOSITESB.2015.10.037.
  • [42] V. Lopresto and G. Caprino, “Damage Mechanisms and Energy Absorption in Composite Laminates Under Low Velocity Impact Loads,” in Solid Mechanics and Its Applications. Dordrecht: Springer Netherlands, 2013, vol. 192, doi: 10.1007/978-94-007-5329-7.
  • [43] C. Zhang, B. Zhu, D. Li, and L.J. Lee, “Extruded polystyrene foams with bimodal cell morphology,” Polymer (Guildf), vol. 53, no. 12, pp. 2435–2442, May 2012, doi: 10.1016/J.POLYMER.2012.04.006.
  • [44] A. Alipour, R. Lin, and K. Jayaraman, “Enhancement of performance in flax/epoxy composites by developing interfacial adhesion using graphene oxide,” Express Polym. Lett., vol. 17, no. 5, pp. 471–486, May 2023, doi: 10.3144/EXPRESSPOLYM-LETT.2023.35.
  • [45] B.D. Lawrence and R.P. Emerson, “A Comparison of Low-Velocity Impact and Quasi-Static Indentation,” Army Research LaboratoryARL-TR-6272, 2012. [Online]. Available: https://apps.dtic.mil/sti/pdfs/ADA579696.pdf
  • [46] ASTM D7264/D7264M-07, “Designation: D 7264/D 7264M-07 Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials 1.” [Online]. Available: http://www.ansi.org
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dbee9251-e783-4913-a405-3da34bb74b15
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.