PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The concept of surveying set for geometrical dimensioning of difficultly accessible objects

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Koncepcja przyrządu pomiarowego do wymiarowania obiektów trudno dostępnych
Języki publikacji
EN
Abstrakty
EN
While constructing and documenting civil structures, large machines, and industrial facilities, one can encounter a situation where relevant control points are hardly accessible. The instruments with appropriate surveying equipment available on the market provide relatively standard measurements. The limitations mentioned above may transfer into an increased working time (or financial effort) that must be considered while performing the prescribed measuring works. One of the possible solutions (assuming financial capabilities) is utilizing a video-total station (a scan station) with additional supporting equipment. Another possibility would be employing a terrestrial laser scanner (TLS) or close-range photogrammetry. However, such technologies demonstrate significant limitations, especially in the industrial environment. Regarding that, the authors propose an original measuring set collaborating with a free electronic total station. The main working principle is a known surveying 3D-polar method that can determine XYZ coordinates. The solution presented in the paper facilitates the performance of inventory works, consisting of dimensioning civil structures and rooms with difficult access. Such situations can often be encountered in industrial plants or while documenting architectural or other engineering structures. The device can also be used for dimensioning ventilation ducts, elevator shafts, and other similar facilities. Depending on the configuration of the measuring equipment and the target shapes, the final accuracy may reach a sub-millimeter or millimeter level. Hence, the solution can successfully be applied in civil engineering, industrial surveying, and industrial metrology.
PL
Podczas prac realizacyjnych, a następnie inwentaryzacji obiektów budowlanych, dużych maszyn i urządzeń napotkać można sytuacje, w których występuje ograniczona dostępność do punktów pomiarowych. Oferowane na rynku instrumenty i oprzyrządowanie umożliwiają zwykle prowadzenie pomiarów standardowych. Uzupełnieniem zasygnalizowanych rozwiązań jest opisany w niniejszej pracy oryginalny zestaw współdziałający z dowolnym tachimetrem elektronicznym. Istotą pomiaru jest znana w geodezji metoda pomiaru biegunowego 3D pozwalająca wyznaczyć współrzędne XYZ punktów kontrolowanych. Przedstawione w artykule rozwiązania usprawniają wykonanie prac inwentaryzacyjnych polegających na wymiarowaniu elementów geometrycznych oraz pomieszczeń, do których dostęp jest utrudniony. Z sytuacją taką można się spotkać najczęściej w zakładach przemysłowych, a także podczas prowadzenia prac inwentaryzacyjnych obiektów architektonicznych lub inżynierskich. Opracowany zestaw można z powodzeniem wykorzystać także do wymiarowania przewodów wentylacyjnych, szybów windowych oraz innych podobnych instalacji. W zależności od konfiguracji wykorzystanego sprzętu pomiarowego oraz długości celowych, osiągnąć można dokładność wyznaczenia punktów pomiarowych na poziomie submilimetrowym lub milimetrowym.
Rocznik
Strony
627--644
Opis fizyczny
Bibliogr. 33 poz., il., tab.
Twórcy
  • Wrocław University of Environmental and Life Sciences, Faculty of Environmental Engineering and Geodesy, Wrocław, Poland
  • Warsaw University of Technology, Faculty of Geodesy and Cartography, Warsaw, Poland
  • Wrocław University of Environmental and Life Sciences, Faculty of Environmental Engineering and Geodesy, Wrocław, Poland
  • Wrocław University of Environmental and Life Sciences, Faculty of Environmental Engineering and Geodesy, Wrocław, Poland
Bibliografia
  • [1] California Department of Transportation, “Classifications of Accuracy and Standards”, 2015. [Online]. Available: https://dot.ca.gov/programs/design/ccs-standard-plans-and-standard-specifications. [Accessed: 25.06.2022].
  • [2] “Polski Komitet Normalizacji”. [Online]. Available: https://www.pkn.pl. [Accessed: 25.06.2022].
  • [3] S.C. Stiros, “Accurate measurements with primitive instruments: the paradox in the qanat design”, Journal of Archaeological Science, vol. 33, pp. 1058-1106, 2006.
  • [4] K. Murawski, “Method of measuring the distance to an object based on one shot obtained from a mtionless camera with a fixed-focus lens”, Acta Physica Polonica, vol. 127, pp. 1591-1595, 2015.
  • [5] Y. Zhuang, Y. Cao, and J. Thompson, “A survey of positioning systems using visible LED lights”, IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 1963-1988, 2018, DOI: 10.1109/COMST.2018.2806558.
  • [6] W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y.L. Chen, X.D. Lu, W. Knapp, A. Weckenmann, W.T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning”, CIRP Annals - Manufacturing Technology, vol. 64, no. 2, pp. 773-796, 2015, DOI: 10.1016/j.cirp.2015.05.009.
  • [7] R. Oteroa, S. Lagüelab, I. Garridoa, and P. Ariasa, “Mobile indoor mapping technologies: A review”, Automation in Construction, vol. 120, 2020, DOI: 10.1016/j.autcon.2020.103399.
  • [8] M. Kalantari and M. Nechifor, “3D indoor surveying - a low cost approach”, Survey Review, vol. 49, no. 353, pp. 93-98, 2017, DOI: 10.1080/00396265.2015.1122279.
  • [9] K. Śmielewski, K. Karsznia, J. Kuchmister, P. Gołuch, and I. Wilczyńska, “Accuracy and functional assessment of an original low-cost fibre-based inclinometer designed for structural monitoring”, Open Geosciences, vol. 12, no. 1, pp. 1052-1059, 2020, DOI: 10.1515/geo-2020-0171.
  • [10] S. Huang, Z. Zhang, T. Ke, M. Tang, and X. Xu, “Scanning photogrammetry for measuring large targets in close range”, Remote Sensing, vol. 7, no. 8, pp. 10042-10077, 2015, DOI: 10.3390/rs70810042.
  • [11] R.K. Leach, C.L. Giusca, H. Haitjema, C. Evans, and X. Jiang, “Calibration and verification of areal surface texture measuring instruments”, CIRP Annals - Manufacturing Technology, vol. 64, no. 2, pp. 797-813, 2015, DOI: 10.1016/j.cirp.2015.05.010.
  • [12] M.G. Guerra, L.M. Galantucci, F. Lavecchia, and L. De Chiffre, “Reconstruction of small components using photogrammetry: a quantitative analysis of the depth of field influence using a miniature step gauge”, Metrology and Measurement Systems, vol. 28, pp. 323-342, 2021, DOI: 10.24425/mms.2021.136610.
  • [13] A.S. Gneeniss, J.P. Mills, and P.E. Miller, “In-flight photogrammetric camera calibration and validation via complementary lidar”, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 100, pp. 3-13, 2015, DOI: 10.1016/j.isprsjprs.2014.04.019.
  • [14] I. Piech, T. Adam, and P. Dudas, “3D modelling with the use of photogrammetric methods”, Archives of Civil Engineering, vol. 68, no. 3, 2022, pp. 481-500, 2022, DOI: 10.24425/ace.2022.141898.
  • [15] B. Supriyadi, “Numerical analysis for frequency and displacement improvement of a long span floor building”, Archives of Civil Engineering, vol. 66, no. 4, pp. 651-660, 2020, DOI: 10.24425/ace.2020.135242.
  • [16] J. Juraszek, “Fibre optic system based on FBG sensors for the monitoring of modern structures”, Archives of Civil Engineering, vol. 68, no. 2, pp. 445-460, 2022, DOI: 10.24425/ace.2022.140652.
  • [17] N.V. Raghavendra and L. Krishnamurthy, Engineering metrology and measurements. Oxford University Press, 2013, pp. 118-140.
  • [18] W. Jakubiec, W. Płowucha, and P. Rosnera, “Uncertainty of measurement for design engineers”, Procedia CIRP, vol. 43, pp. 309-314, 2016, DOI: 10.1016/j.procir.2016.02.027.
  • [19] A. Costille, F. Beaumont, E. Prieto, M. Carle, and Ch. Fabron, “Three-dimensional metrology inside a vacuum chamber”, in Proc. SPIE 9912, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II, 99124I. 2016, DOI: 10.1117/12.2231580.
  • [20] Z. Zaki, H. Halima, and A. Beshr, “Accurate surveying measurements for structural members deformation”, in Proceedings of the third Minia International Conference for Advanced Trends in Engineering (MICATE 2005). [Online]. Available: https://www.researchgate.net/publication/280147380. [Accessed: 25.06.2022].
  • [21] F.J. Van Leijen, H. Van der Marel, and R.F. Hanssen, “Towards the Integrated Processing of Geodetic Data”, in Proc. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. IEEE, 2021, pp. 3995-3998.
  • [22] A. Weckenmann, X. Jiang, K.-D. Sommer, U. Neuschaefer-Rube, J. Seewig, L. Shaw, and T. Estler, “Multisensor data fusion in dimensional metrology”, CIRP Annals - Manufacturing Technology, vol. 58, no. 2, pp. 701-721, 2009, DOI: 10.1016/j.cirp.2009.09.008.
  • [23] P.G. Kossakowski, “Relocation of a historic building at the old Norblin factory in Warsaw”, Archives of Civil Engineering, vol. 67, no. 1, pp. 39-55, 2021, DOI: 10.24425/ace.2021.136460.
  • [24] M.E. Kuttykadamov, K.B. Rysbekov, I. Milev, K.A. Ystykul, and B.K. Bektur, “Geodetic monitoring methods of high-rise constructions deformations with modern technologies application”, Journal of Theoretical and Applied Information Technology, vol. 93, no. 1, pp. 24-30, 2016.
  • [25] W. Odziemczyk and M.Woźniak, “Investigation of stability of precise geodetic instruments used in deformation monitoring”, Reports on Geodesy and Geoinformatics, vol. 104, no. 1, pp. 79-90, 2017, DOI: 10.1515/rgg-2017-0017.
  • [26] W. Odziemczyk, M. Woźniak, “Monitoring of WUT grand hall roof in conditions of high temperature changes”, Reports on Geodesy, no. 1, pp. 97-104, 2009.
  • [27] W. Odziemczyk, “Stability test of TCRP1201 + total station parameters and its setup”, E3SWeb Conferences, vol. 55, XXIIIrd Autumn School of Geodesy. 2018, DOI: 10.1051/e3sconf/20175500010.
  • [28] J.O. Ogundare, Precision Surveying - The Principles and Geomatics Practice. Hoboken, New Jersey: John Wiley & Sons, Inc., 2015, pp. 194-199.
  • [29] Leica Geosystems AG, Leica DISTO D3 - The original laser distance meter. Heerbrugg, Switzerland: Leica Geosystems AG, 2007, p. 15.
  • [30] A. Possolo and H.K. Iyer, “Concepts and tools for the evaluation of measurement uncertainty”, Review of Scientific Instruments, vol. 88, art. no. 011301, 2017, DOI: 10.1063/1.4974274.
  • [31] Leica Geosystems AG, Leica Nova MS50 Datasheet. Heerbrugg, Switzerland, 2013.
  • [32] S.D. Chekole, “Surveying with GPS, total station and terresterial laser scaner: a comparative study”, Master of Science Thesis in Geodesy No. 3131, TRITA-GIT EX 14-001, Royal Institute of Technology (KTH), Stockholm, Sweden, 2014, pp. 18-21.
  • [33] S. Heng, “Precision analysis of free-station positioning in total station”, Advanced Materials Research, vol. 694-697, pp. 1281-1285, 2013, DOI: 10.4028/www.scientific.net/amr.694-697.1281.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dbeddf30-07ca-4f73-9043-582f7b319bd9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.