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ABSTRACT

Over the last few decades significant increase in computational
methods (in silico) was annotated. Novel methods have been
developed and applied for hypothesis improvement and testing
in regions of industrial, pharmaceutical and environmental
research. The term /n silico methods include variety of
approaches. Considerable attention has been attracted to
databases, data analysis tools, quantitative structure-activity
relationships (QSAR), pharmacophore models, molecular
docking and dynamics, pharmacokinetics and other molecular
modelling techniques. /n silico methods are often accompanied

by experimental data, both to create the model and to test it.
Such models are frequently used in the discovery and
optimization of novel molecules with expected affinity to
a target, the estimation of absorption, distribution, metabolism,
excretion and toxicity properties as well as physicochemical
characterization. The review summarizes briefly the applications
of most common molecular modelling techniques and evaluates
their application in environmental research. Additionally, this
study considers computer aided methods as potential and
complex tools that may serve as valuable partnership with wet-
lab experiments and may provide a rational aid to minimize the
cost and time of research.

INTRODUCTION

At the beginning of 1980°s the significant increase of
computer technology was annotated. Structural biology
primarily focused on obtaining macromolecules and
relating their structures to biological function was enriched
by new field called ‘computational biology’. In the
beginning it was associated with finding similarities among
nucleotide strings of known genetic sequences and relating
them to evolutionary commonalities. Furthermore, the
increase of computing power allowed applications of
virtual modelling to more complex molecular biology
aspects, such as prediction of the three-dimensional
molecules arrangement or prediction of their interactions
with endogenous ligands. Nowadays, computers have
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become more and more powerful and have established the
development of new modelling techniques called as
‘molecular modelling’. The approach contains wide range
of tools for visualisation and manipulation of molecules in
in silico environment.

Molecular modelling is concerned with the description
of the atomic and molecular interactions that fulfil
microscopic and macroscopic behaviour of physical
systems. The essence of molecular modelling resides in
the connection between the microscopic and the
macroscopic world provided by the theory of statistical
mechanics. The fundamental concept of molecular
modelling is a “model”. It is defined as mathematical or
physical description that contains analogous properties
and acts in analogous way as modelled object. Therefore,
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model is a tool that can be used to describe the system and
its behaviour under the different modelled conditions. To
illustrate the concept a model of perfectly elastic collision
(fundamental model in physics) can be considered as an
example (Figure 1).

Figure 1. Illustration of perfectly elastic collision model; a) balls
before impact; b) balls after impact. More details in the text.

The model illustrates collision of two objects, e.g.
billiard balls. In contrast to reality, in the above model,
objects do not deform themselves and energy of the system
is not lost (for example by heating up). Due to this
simplification, the assumption of the law of conservation
of energy and momentum are fulfilled. Although, the
mathematical calculation of the collision phenomena is
not fully precise, in some cases the approximation may be
accurate enough to be a good model to describe the
phenomena. Especially, when the impact should be
calculated for billions of objects and extra precision is not
obligatory. Concept of using models to simplify the reality
did not come with the advent of molecular modelling. It
was known since the creation of science in wide range of
scientific areas such as in situ, in vivo and in vitro. The
novel concept was to accommodate the traditional areas of
modelling and carry them into a new level. It has opened
new possibilities to work with new research areas.
Nowadays, in silico environment has become a valuable
partnership for wet-lab experiments, what provides a great
aid to minimize the cost and time of research. This review
briefly summarizes the most current and popular
techniques considering their application in environmental
research.

Biological databases

Biological databases are a collection of biological data
organized according to few models: flat file model,
network model, hierarchical model, relational model,
object model or object-relational model. The most

effective and applied in the largest biological databases is
the object-relational model. Depending on the source of
collected data, biological databases are divided into two
types: primary and secondary databases. Primary
databases are the libraries of experimentally derived data
such as nucleotide sequences derived from sequencing
(e.g. EMBL (Kanz et al. 2005; Kulikova et al. 2004)
currently ENA (Hoopen et al. 2010)). Secondary
databases are the collection of computer-processed
primary information such as amino acidic sequence
translated in silico from RNA or DNA sequence (e.g.
TrEMBL; nowadays TrEMBL is the part of UniProt).
Three primary nucleotide sequence databases (DDBJ,
ENA(EMBL) and GenBank) collaborate to acquire,
maintain, share complex nucleotide sequence information
in the project named International Nucleotide Sequence
Database Collaboration (INSDC) (Cochrane et al. 2011;
Karsch-Mizrachi et al. 2011). Moreover, the special types
of biological databases are metadatabases, which collect
data from diverse sources and make them available in
unified form. Thus, metadatabases are the database of
databases (Hsu et al. 1991). Most of the biological
databases are part of Dbiological, biomedical,
biotechnological services, which are the collections of
databases, tools, document allowed by scientific institutes
(e.g. GenBank being a part of NCBI — National Center for
Biotechnology Information, ENA being a part of EBI —
European Bioinformatics Institute) (Table 1).

Once a year, the journal of Nucleic Acids Research
publishes the list of all available biological databases with
brief descriptions and direct links to them. In 2013 the
published list consists of 1512 items grouped in

categories: Nucleotide Sequence Databases, RNA
sequence databases, Protein sequence databases,
Structure Databases, Genomics Databases (non-

vertebrate), Metabolic and Signaling Pathways (Human
and other Vertebrate Genomes) Human Genes and
Diseases, Microarray Data and other Gene Expression
Databases, Proteomics Resources, Other Molecular
Biology Databases, Organelle databases, Plant databases,
Immunological databases, Cell biology (Fernandez-
Sudrez and Galperin 2013). In the succeeding paragraphs
the most useful databases in molecular modelling have
been summarized.

The Protein database in NCBI is the metadatabase
which collects the amino acidic sequence data collected from
a variety of sources, including SwissProt, PIR, PRE PDB and
translations from annotated coding regions in GenBank,
RefSeq, TPA, EST.

The Protein Information Resource (PIR) is a complex public
resource of proteins for proteomic research studies. PIR
manages the Protein Sequence Database (PSD). PIR-PSD
contains protein records classified in taxonomic order (Wu et
al. 2003).
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Table 1. The table contains the name or abbreviation, one sentence summary and web address of described

below biological databases.

No. Name Short description wWww
1 INSDC Collaboration of ENA, DDBJ and GeneBank http://www.insdc.org/
2 EBI European Bioinformatic Institute http://www.ebi.ac.uk/
3 ENA Primary nucleotide sequence database http://www.ebi.ac.uk/ena/
4  UniProt Metadatabase of protein sequence http://www.ebi.ac.uk/uniprot/
5 DDBJ Primary nucleotide sequence database http://www.ddbj.nig.ac.jp/
6 NCBI The institute of biotechnology in USA http://www.ncbi.nlm.nih.gov/
7 GenBank Primary nucleotide sequence database http://www.ncbi.nlm.nih.gov/genbank/
8 MMDB Database of 3D structures of macromolecules http://www.ncbinlm.nih.gov/Structure/MMDB/mmdb.shtml
9 PIR Resource for proteomic research studies http://pir.georgetown.edu/
10 ExPASy Bioinformatics resource portal http://expasy.org/
11 PDB Database of 3D structures of macromolecules http://www.rcsb.org/pdb/home/home.do
12 Pfam Database of protein families and domains http://pfam.sanger.ac.uk/
13 SCOP Database of structural classification of proteins http://scop.mre-lmb.cam.ac.uk/scop/
14 CATH Hierarchical classification of protein domain structures  http:/www.cathdb.info/
15 KEGG Database of molecular interaction networks http://www.genome.jp/kegg/
16 BRENDA Database of enzyme http://www.brenda-enzymes.info/
17 PDBsum Protein database supported by EBI http://www.ebi.ac.uk/pdbsum/
18 OPM Orientations of Proteins in Membranes (OPM) database http://opm.phar.umich.edu/
19 PPM OPB service for positioning the transmembrane and  http://opm.phar.umich.edu/server.php

peripheral proteins in membranes

The Molecular Modelling Database (MMDB) is one of
NCBI databases, contains three-dimensional structures
of macromolecules such as proteins and polynucleotides.
Each record in MMDB is linked to the rest of the
NCBI databases, including sequences, bibliographic citations,
taxonomic classifications, and sequence and structure
neighbours.

The Universal Protein Resource (UniProt) is a
metadatabase of protein sequence and annotation data.
The UniProt includes the UniProt Knowledgebase
(UniProtKB), the UniProt Reference Clusters (UniRef)
and the UniProt Archive (UniParc). UniProt is a
collaboration between the European Bioinformatics
Institute (EBI), the Swiss Institute of Bioinformatics and

the Protein Information Resource (PIR). The UniPort
databases are accessible by the Bioinformatics Resource
Portal — ExPASy. In addition, the ExXPASy provides access
to bioinformatic tools in molecular modelling. One of
these tools is SWISS-MODEL. It is a protein structure
homology-modelling server, accessible by WWW, or from
the program DeepView (Swiss Pdb-Viewer). The goal of
this server is to make protein modelling available and easy
to use to all scientists.

The UniProt Knowledgebase (UniProtKB) is the collection
of: the UniProtKB/Swiss-Prot, the UniProtKB/TrEMBL, the
UniProt Reference Clusters (UniRef), the UniProt Archive
(UniParc) and the UniProt Metagenomic and Environmental
Sequences (UniMES).
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The Swiss-Prot (actual full name - UniProtKB/Swiss-Prot) is
the manually annotated and reviewed part of the UniProt
Knowledgebase (UniProtKB). It is a non-redundant protein
sequence metadatabase, which combines experimental data,
computed features and scientific conclusions.

TrEMBL (full name UniProtKB/TrEMBL) is automatically
annotated and not reviewed database of protein information,
including function, classification, and cross-reference.

The Protein Data Bank (PDB) is a database of experimentally
solved data of three dimensional structures of biological
macromolecules. PDB provides information of primary
structure (sequence), full 3D structure information (secondary,
tertiary and quaternary structures), ligand structures, structural
classification (CATH, SCOPE), taxonomy, enzyme
classification (BRENDA, KEGG), literature, biological
specification, chemical properties and domain occurrence (e.g.
Pfam). PDB provides numerous tools to analyse the protein
structure and links to external databases and tools. PDB is the
key database in molecular modelling because it is a collection
of real structures, which is an important structural reference for
modelling (Berman et al. 2000).

The Pfam is a widely used database of conserved protein
families and domains. The goal of Pfam is to make
a comprehensive and accurate classification of all known
protein sequences (Finn et al. 2010).

The Structural Classification of Proteins (SCOP) database
aims to provide a detailed and comprehensive description of
the structural and evolutionary relationships between all
proteins whose structure is known, including all entries in the
Protein Data Bank (PDB). Proteins are classified to reflect
both structural and evolutionary relatedness. The levels in the
classification are: Family (evolutionarily relationship),
Superfamily (probable common evolutionary origin) and Fold
(structural similarity) (Murzin et al. 1995; O’Maille et al. 2002).

The Protein Structure Classification (CATH) is the semi-
automatic procedure for hierarchical classification of protein
domain structures. This procedure classifies proteins in the
four main levels: class (C - the secondary structure of the
domain), architecture (A - structural similarity but no
evidence of homology - Fold in SCOP), topology (T - grouping
of topologies sharing structural features) and homologous
superfamily (H - evolutionary relationship- Superfamily in
SCOP) (Orengo et al. 1997).

The CATH Protein Family Database (CATH-PFDB) contains
structural domains, homologous superfamilies, fold groups,
grouped sequences and structures (Cuff et al. 2011; Pearl et
al. 2001).

The Kyoto Encyclopaedia of Genes and Genomes (KEGG) is
the reference database that integrates knowledge on

molecular interaction networks. The KEGG database
consists of three categories of sixteen databases: Systems
information (e.g. Pathway/Disease/Drug database), Genomic
information (e.g. Orthology/Genome/Genes database),
Chemical information (Compound/Reaction/Enzyme
database) (Kanehisa et al. 2004).

The BRENDA (BRaunschweig ENzyme DAtabase) is the
largest open access system of databases containing
a biochemical and molecular information on all classified
enzymes, bioinformatic tools for querying the database and
calculating molecular properties. It contains classification
and nomenclature, reaction and specificity, functional
parameters, occurrence, enzyme structure and stability,
mutants and enzyme engineering, preparation and isolation,
the application of enzymes and ligand-related data. The data
in BRENDA are manually elaborated. Records are linked to
a literature reference, the origin of organism and, where
available, to the protein sequence of the enzyme protein
(Chang et al. 2009).

PDBsum is a protein database supported by EBI. PDBsum
records contain complex, easy to analyse information about
sequence, domains, spatial conformation and structure,
interactions of the proteins deposited in the Protein Data
Bank (Laskowski 2009). The main advantage of PDBsum is
extensive list of references and links from each record to
external databases (such as PDBe, RCSB, SRS, MMDB,
PDBWiki, Proteopedia, SCOP, CATH, Pfam, UniProt, Gene
Ontology, HSSP) and protein structure analysing tools (for
instance WHAT CHECK, PROCHECK, ArchSchema).

Orientations of Proteins in Membranes (OPM) database
accesses the information about spatial orientation of proteins
with respect to the surface of lipid membranes (Lomize et al.
2006). Proteins collected in the OPM are taken from the
Protein Data Base, these are transmembrane proteins,
peripheral proteins and membrane-active peptides. PPM
server (Lomize et al. 2012) is a tool implemented in OPM
webpage, which allows calculating the positions of any
transmembrane and peripheral proteins in membranes using
PDB input file of analysed protein.

Aforementioned chemical repositories consist of a wealth of
biological targets and chemicals data that can be screened and
used by in silico approaches. Although much of the molecular
modelling research to date has been focused on human targets,
many of these databases contain reliable data from other
species that would shed light on species differences and aid
discovery of molecules for animal healthcare as well as assist in
understanding the importance of toxicological profile
improvement for chemicals released into the environment.

Pharmacophore modelling

Understanding the chemistry behind molecular recognition
is of utmost importance to conduct successful research.
One of the computational tools that can successfully
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facilitate derivation of information from a set of
compounds is generation of a pharmacophore. The most
widely accepted definition considers a pharmacophore as
the largest common denominator shared by a set of active
molecules. A pharmacophore model represents molecular
features which are indispensable for binding of a ligand
to a target macromolecule. The IUPAC defines
a pharmacophore as ”an ensemble of steric and electronic
features that is necessary to ensure the optimal
supramolecular interactions with a specific biological
target structure and to trigger (or block) its biological
response” (Wermuth et al. 1998). Molecular features are
defined by pharmacophoric descriptors, e.g. H-bond donor
or acceptor properties, hydrophobic and electrostatic
interaction sites. A pharmacophore model explains how
structurally diverse ligands within a set can bind to a common
receptor site.

Pharmacophore model can be constructed via ligand-
based or receptor-based approach. The former uses ligands
having activity against a target of unknown structures.
Ligands are used to search for pharmacophore features and
models. The latter approach uses resolved ligand-target
complexes to illustrate the complementarity of the receptor
to the ligand. These models expend molecular recognition by
additional target features and correct ligand geometry
(Figure 2).
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The pharmacophore pattern allows screening (virtual
screening) for novel ligands that share the same features
arranged in the same relative orientation thus binding to the
same receptor site. Recent study showed application of
module Phase as a tool to find matches to a given
pharmacophore hypothesis in a database (LOpez-Ramos
and Perruccio 2010). The target protein was the iron-
containing enzyme, 4-hydroxyphenylpyruvate dioxygenase
(HPPD). The protein has proven to be a very successful
target for the development of herbicides with bleaching
properties, and today HPPD inhibitors are well established
in the agrochemical market. The aim of the study was to
identify compounds with inhibitory properties using
computational tools and to compare the performance of
these tools. One of the methods applied was pharmacophore-
based search. Researchers sought out a database consisting of
compounds active on HPPD and decoy compounds.
Subsequently, the search was performed using the
conformers stored in the previously prepared Phase
database. In this study pharmacophoric features of inhibitor
candidate were characterized. Further information can be
derived from what is already known about the binding mode
of the compounds. In the case of HPPD inhibitors, using
this pharmacophore search in the database along with
Phase outperformed all the other screening methods. The
pharmacophore search performed with the Phase

Figure 2. Illustration of receptor-based pharmacophore modelling applied for crystal structure of the AMPA receptor (PDB
ID: 3il1) bound to the allosteric modulator IDRA-21 (a) and ligand map of accompanying interactions (b). Arrow — H-bond
acceptor (HBA); yellow sphere - steric interactions.
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pharmacophore tool gave the best results in the retrieval of
active compounds.

Pharmacophore based virtual screening can be done using
databases, e.g. ZINC (Irwin et al. 2012) particularly
ZINCPharmer dedicated to pharmacophores (Koes and
Camacho 2012). Using the pharmacophore approach one can
explore the features of macromolecule-ligand interactions
through “pharmacophore map”. The map simultaneously
shows the interactions made by all ligands with their
receptors in 3D on the computer graphics (McGregor 2007).
It is instructive to view all the ligands overlapped in the
common reference frame, with bond connectivity removed
and atoms coloured by pharmacophore features. This
approach highlights the basis for ligand activity against
several targets. Another major task is then to address the
question of selectivity between targets and to explore the
differences between them.

Compounds that match the pharmacophore contours of
the molecule serve as potential lead compounds for further
development. A computer-based similarity search via easily
accessible databases can be performed to speed up the
process of lead identification. Pharmacophore generation
can be regarded as a method by which the binding site on a
protein can be located and mapped and the protein-ligand
intermolecular interactions can be studied in the context of
environmental research or health sciences.

Quantitative Structure-Activity Relationship (QSAR)

One of the general purposes in environmental research is to
predict the impact of newly synthesized compounds as well as
to explain the mechanism of existing ones. Quantitative
structure-activity relationship (QSAR) methods perform an
important role in this process. The approach indicates
relationship derived from analysis of the properties of
previously characterised compounds (Kubinyi 1995).
Classical QSAR method correlates biological activities of tested
compounds with their physicochemical properties encoded by
certain structural features. Moreover, it is a technique for
building computational or mathematical models which
attempts to find a statistically significant correlation between
compounds, structure and function using chemometric
techniques. In general, QSAR methods are reduced to solve
the “simple” structure — activity correlation equation
(Equation 1). It assumes that compound’s activity is a direct
function of the synergic impact of their physiochemical
and/or structural properties.

Activity=f(physiological and/or structural properties) (1)

Equation 1. Equation illustrates
main concept of QSAR methods.
In environmental research QSARs are mainly employed to
predict measures of toxicity from physical characteristics of
the chemical structure (known also as molecular descriptors).
Acute toxicities, such as the concentration that causes half

the population to die (LD50), are one example of the toxicity
measures that may be predicted from QSAR models. Basic
QSAR models calculate the toxicity of chemicals using
a Multiple Linear Regression (MLR) function of molecular
descriptors, such as molecular weight, number of rotatable
bonds, Log P and others (Equation 2).

Toxicity = a'x1 + b'x2 + c ... (2)

Equation 2. The example QSAR model of toxicity.

x17 and x2 - independent descriptors (e.g. molecular
weight or octanol-water partition coefficient); a, b,

and c - fitted parameters.

Three-dimensional QSAR (3D-QSAR) analysis (being
a spatial variant of QSAR) is commonly used in the
environmental studies to establish relationships between
three dimensional molecular properties and observed
biological effects on a series of congeneric compounds
(Cramer et al. 1988). One of the widely used 3D-QSAR
method is Comparative Molecular Field Analysis (CoMFA).
It adapts statistical procedures to correlate molecular
features, such as steric and electrostatic properties with
biological activities (Kubinyi 1997a). The fields are calculated
by testing the interactions between a virtual probe atom and
a collection of aligned molecules.

Figure 3. Illustration of CoMFA interaction fields around
group of 20 testosterone derivatives. The figure shows
3-chlorodihydrotestosterone, details in the text.

The interactions are evaluated for each molecule at
regularly spaced intervals on a virtual grid surrounding the
molecules. The result is an interactive contour map with
indication of fields which have impact on the activity (Figure 3).
Green fields denote desirable steric interactions between
ligand and binding site of the molecular target as opposed to
yellow fields where steric bulk influence is undesirable. The
colour codes indicate regions where electronegative
interactions enhance (blue) or reduce (red) the activity. Such
approach has essentially two main advantages: firstly, its
ability to represent the information in 3D format and
highlights regions of the molecules that have positive and
negative effects associated with steric and electrostatic
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interactions, as shown in Figure 3. Secondly, its ability to
predict the unknown biological activity of new compounds
based on the calculated model. Over the past few decades,
CoMFA methods have become widespread in regions of both
industrial and academic research regarding QSAR studies.
Such approaches are providing not only the prediction of
specific properties of new compounds, but also help to
elucidate the possible molecular mechanism of the
ligand-target interactions, thus being beneficial especially in
cases when experimental NMR or crystal structure of the
target molecule is unavailable (Hansch and Fujita 1964).

Apart from the widespread application of QSAR
modelling in many regions of science, it is also a well-
recognized technique in environmental research, mainly for
toxicity prediction (Lo Piparo and Worth 2010; Schultza et al.
2003). One of the priority developments of QSAR toxicity
models is mainly employed to identify the adverse effects
a chemical may have on sexual function and fertility in adult
males and females, developmental toxicity in the offspring, as
well as effects on, or mediated via, lactation. Reproductive
toxicity refers to a wide range of endpoints relating to
mechanisms of action currently unknown or only partially
understood at the molecular and cellular level. Along with
carcinogenic studies, reprotoxicity studies are among the
most costly and time-consuming experimental procedures.
Furthermore, reprotoxicity testing requires the highest
number of test animals. For all these reasons, the
development of alternative (non-animal) methods for toxicity
and reprotoxicity assessment is of high political priority
(following European Commission recommendation)
(Lo Piparo and Worth 2010). Currently there are relatively
few models for toxicity endpoints, partly due to the biological
complexity of the endpoint, which covers many incompletely
understood mechanisms of action, and partly due to the
paucity and heterogeneity of high quality data suitable for
model development. In contrast, there is an extensive and
growing range of software and literature models for
predicting activity, e.g. ADMET Predictor, ACD/Tox Suite,
CAESAR, Derek, Molcode Toolbox, MultiCASE, OECD
QSAR Application Toolbox, PASS, T.E.S.T, TOPKAT,
Toxmatch, VirtualToxLab, etc.

Despite the varied applications of QSAR models, its
availability for toxicity is limited as a result of the diversity of
potential endpoints, and the paucity of data suitable for
modelling (Urniaz and Jozwiak 2013). Available models are
potentially useful as a means of supporting hazard
identification and priority setting, but not yet for the
establishment of toxic potencies for use in risk assessment.

Molecular docking

Computational approach that fits small molecule into the
structure of macromolecular target and scores and ranks its
complementarity was pioneered during the early 1980s (Kuntz
et al. 1982). Nowadays docking simulation is a key molecular
modelling methodology. It requires structural information for
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the macromolecule which can be obtained from X-ray
crystallography, NMR or homology modelling, thus it is
a structure (target)-based approach. Homology modelling is
another computational technique used to predict unknown
protein structure on the basis of sequence similarity to known
protein structure(s). The macromolecule can be a protein
(receptor, enzyme), RNA or DNA, while the ligand is usually
a small molecule, but can be a protein as well.

The prediction is usually done by searching the ligand’s
translational and rotational degrees of freedom within the
protein cavity, and by searching the conformational states of
the ligand itself. The result of docking procedure is a predicted
position of ligand’s conformer on the receptor binding site
(Figure 4). This tool indicates possible conformations of ligand-
target complexes and molecular features that are responsible
for interactions between them.

Figure 4. Model of 9-aminophenanthrene (light blue compound)
and cofactor (grey) in the active site of mammalian cytochrome
P450 monoxygenase (blue protein rendered as secondary
structure view) deposited in PDB database (PDB ID: 1EGY).
The resulting conformation of docking procedure performed in
Molegro Virtual Docker (MVD 2012.5.5.0) is coloured in orange.
Docked ligand shows similar pattern of binding and displays the
same type of interactions as co-crystallised one.

First step in the docking process is the application of
docking algorithms to pose small molecules in the active
site. Posing determines whether a ligand conformation fits
in the binding site. Algorithms are complemented by
scoring functions that are designed to predict the
biological activity through the evaluation of interactions
between compounds and potential targets (Kitchen et al.
2004). It is a rough measure of the interactions between
ligand and target, usually described by using van der
Waals term given by a Lennard-Jones potential function
and electrostatic energy terms given by a Coulombic
interactions. Docking programs use a scoring function
which distinguishes among the generated binding modes
the best solution. A large number of search algorithms
and scoring functions have been developed to model
protein-ligand complex.
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The scoring function evaluates compound fits on the basis
of calculations of approximate shape and electrostatic
complementarities. More advanced evaluation of docking
results can be performed by ranking the poses. Ranking
procedures usually are expended calculations that re-
evaluate poses with respect to e.g. entropy or explicit
solvation. The results also show that energy minimization and
reranking of the top poses can be an effective means to
overcome some of the limitations of a given docking function
(Perola et al. 2004). It should also be noted that docking
method encounters various limitations, e.g. of crystallographic
resolution or water influence on binding event. Docking
software includes AutoDock, Dock, 3D-Dock, Affinity,
LigandFit, FRED, SurFlex, HEX, Glide, GOLD, ICM, and
MVD as examples.

The docking study was a valuable tool used by Yang and
co-workers to investigate the polybrominated diphenyl ethers
(PBDEs) widely used as flame retardants (Schecter et al.
2005; Yang et al. 2010). Unfortunately, PBDEs accumulate in
the environment (Birnbaum and Staskal 2004; Darnerud et
al. 2001). Furthermore, PBDEs are known to be endocrine-
disrupting compounds, altering activity of the human
estrogen receptor alpha (hERo). In order to distinguish the
ER antagonists among the set of 41 PBDE compounds, the
binding features of the target compounds were analysed by
molecular docking. Automatic flexible molecular docking
program SurFlex-Dock implemented in SYBYL 7.3
generated ligand poses close to the X-ray conformation more
often than the other docking programs (Cross et al. 2009).
SurFlex-Dock docks ligands automatically into a receptor’s
ligand binding site using a protomol-based method and an
empirically derived scoring function. The protomol is
a unique and important factor of the docking algorithm and
is a computational representation of the assumed ligands that
interact with the binding site. SurFlex-Dock’s scoring
function contains hydrophobic, polar, repulsive, entropic and
solvation terms. Simulations showed that some of the PBDE
compounds acting as hERo antagonists extended into the
channel of the estrogen receptor (ER), which is usually
occupied by the alkylamine side chain of the ER antagonists
raloxifene and 4-hydroxytamoxifen, while most PBDE
compounds without antiestrogenic activity adopted binding
modes similar to that of ER agonist 17B-estradiol, which did
not reach into the channel. The study suggested that pose
comparison based on docking was useful for discriminating
whether or not PBDE compounds have antiestrogenic
activity. Knowing the binding modes of compounds in hERo.
can help to screen out antiestrogenic compounds and further
develop descriptive and predictive models in ecotoxicology
(Kubinyi 1997b).

Molecular dynamics simulation

Molecular Dynamics (MD) is a computer simulation
method that relies mainly on Newton mechanics to
simulate the physical interactions and movement of atoms

and molecular systems. To obtain the dynamic
characteristics and the understanding of interaction
mechanism at an atomistic scale, MD simulation packages
like AMBER, CHARMM, GROMACS and NAMD are
applied widely in the modelling of systems. Generation of
a successive series of configurations resulting in a trajectory are
very computer time-intensive. Molecular dynamics
provides additional tools that complement the static data
obtained by crystallization and provides new insights into
the molecular mechanisms that govern the binding process.
Binding free energy prediction has been regarded as
a powerful and valuable tool to explore the binding
mechanisms and binding affinity. Simulation consists of the
numerical, step-by-step, solution of the classical equations
of motion, which for a simple atomic system may be written
as Equation 3 and 4.

(3)

d

f/=-a—r/U (4)

For this purpose, we need to calculate the forces f; acting
on the atoms, and these are usually derived from a potential
energy U (1N), where N = (¢}, r2, .. N) represents the
complete set of 3N atomic coordinates.

To start simulation, preparation of ligand-target
complexes, topology and force field files are needed. The
topology file contains all the information about the
structure and connectivity of atoms in the system as well as
few parameters of the force field. Force field is a function
expressing the energy of a system as a sum of diverse
molecular mechanic (or other) terms and is governed by
a set of predefined parameters. Next step in preparation
for MD run is energy minimization (Figure 5). The purpose
of this stage is not to find a true global energy minimum,
but to adjust the structure to the force field, in particular,
distribution of solvent molecules, and to relax possible
steric clashes created by assuming coordinates of atoms.
Next step is heating the simulation system in a linear
manner (e.g. from 0K to 300K) and equilibration.
Equilibration stage is used to equilibrate kinetic and
potential energies, i.e. to distribute the kinetic energy
“pumped” into the system during heating among all
degrees of freedom. In other words, the kinetic energy
must be transferred to potential energy. As soon as
potential energy levels of the equilibration stage are
stabilized we can start the simulation. Generated
trajectories act as a bridge between theory and experiment.
We may test a theory by conducting a simulation. We may
test the model by comparing with experimental results. We
may also carry out simulations on the computer that are
difficult or impossible in the laboratory (for example,
working at extreme temperatures or pressures). The
evident advantage of MD is that it gives a route to
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dynamical properties of the system of interest: transport
coefficients, time-dependent responses to perturbations
and rheological properties. By introduction of perturbations
into the Hamiltonian, or directly into the equations of

motion, their effect on the distribution function may be
calculated (Lee et al. 2003).

Input files

Energy minimization

Heating to 300K

Equilibration

Simulation snapshot
generation

Figure 5. Scheme of basic Molecular Dynamics (MD) workflow.

A combination of in silico approaches was used in
a recent study of major products of biotransformation of
polychlorinated biphenyls (PCBs), namely hydroxylated
polychlorinated biphenyls (HO-PCBs) performed by Li
and co-workers (Li et al. 2012). Production and use of
PCBs were banned in most of the countries, however, these
compounds have still been detected in the environment and
have received concerns from environmental and ecological
perspectives (Dirtu et al. 2010). In this study, docking runs,
molecular dynamics simulation, and structure-based
3D-QSAR models were performed to investigate the
detailed binding mode between ERa with HO-PCBs and
also to develop a rational estrogenic activity predictive
model. Molecular docking and MD simulations optimized
the bound ligands into the active site of receptor protein,
and investigated protein-ligand interactions. A 3D-QSAR
CoMSIA model was then developed. The docked
complexes of ERo. with two HO-PCBs (highly active
compound 4'-OH-CB50 and lowly active compound
2'-OH-CB65) were used as the initial structures for MD
simulations. Molecular docking and MD simulations
suggested that multiple hydrophobic and hydrogen bond
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interactions are two predominant factors that affect the
binding process. Moreover, the probable binding modes of
two compounds with much difference in their activity and
ERo were analysed based on the results from molecular
docking and MD simulations. Combinational use of QSAR,
molecular docking, and MD simulations, was useful in
defining the ligand-receptor binding modes and provided
possible mechanism interpretations.

Using MD as a tool to support or even to substitute wet
laboratory work could assist in focusing the laboratory
experiments resulting not only in saving considerable
amounts of resources, but also increasing the number of
molecules and scenarios investigated. However, this tool
requires a lot of compute resources and special technical
knowledge, despite these facts molecular dynamic studies
are being extended to larger systems and longer time
scales. Molecular docking and dynamic studies are of
considerable importance in a range of disciplines including
molecular biology, drug design, and environmental studies
and have attracted much attention over the last two
decades.

Pharmacokinetics (Toxicokinetics)

Pharmacokinetics studies the rates of liberation,
absorption, distribution, metabolism and excretion of drugs
and metabolites in biological systems. Pharmacokinetic
modelling is possible due to development of mathematical
descriptions for these critical flow rates, commonly
referred to as the LADME scheme. Pharmacokinetic
models have long been used in the prediction of amounts
and concentrations of drugs in the body as functions of
time and dosing. This progress gives benefits to toxicology
and provides a firm foundation for environmental health
research. If applied rationally, pharmacokinetic modelling
can be advantageous in the safety evaluation and
assessment of the adverse effects of environmental
chemicals (Clark and Smith 1984; Young and Holson
1978). Pharmacokinetic models are widely applied to
predict the kinetics of chemical residues in the
environment, to solve pollution problems, and to help
understand and interpret the results of toxicology studies
(Krewski et al. 2011). As a consequence, several types of
pharmacokinetic models exist, e.g. compartmental and
noncompartmental models, physiologically based
pharmacokinetic models, and population pharmacokinetic
models (Figure 6).

Such models have been successful in risk assessment and
safety evaluation, in describing chemical distribution in test
organisms under various toxicological conditions and doses,
in monitoring chemical transfer rates in ecosystems, and in
both optimizing each chemical’s utility and minimizing its
undesirable side effects (Barron et al. 1990; Karara and
Hayton 1984; Landrum et al. 1992). Most importantly, these
models are extensively used in establishing governmental
guidelines and regulations concerning public health
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Figure 6. Compartmental model of the pharmacokinetics of
drugs excreted by bile or by non-renal mode. Visualization
describes the transport of the codeine in modelled organs.
Arrows show the direction of codeine flow to succeeding
compartments (rectangle). Uy, Uy, Uy, Uy, Uy, Uy - speed of
codeine transfer between compartments. (From Jastrzebski
and Urniaz 2011. Adapted with permission from Jagiellonian
University, Krakow, Poland).

problems (Oreskes et al. 1994). Pharmacokinetic modelling
is currently an area of very intensive research
in environmental science. The applications of
pharmacokinetic models have been extensive, scientifically
precise and accurate. More vigorous utilization of these
models is now on the way. Several relevant review articles
have focused on the development of models (Barron et al.
1990) and the application of these modelling techniques to
toxicological testing (Landrum et al. 1992; Young and
Holson 1978). There is also a critical perspective of
pharmacokinetic models currently in use (Wen et al. 1999).
It is important to remember that pharmacokinetic models
are abstractions, subjectively reflecting the defined systems
of the organism, and referring to specific scales and
parameters. Validation of the predictive capability of
pharmacokinetic models is a significant step toward model
acceptance. All models must be tested against

measurements before their predictions can be regarded as
reliable. Quantifying error is an important component of
the model description and the first stage in validation. The
examination of model sensitivity is of enormous importance
to the quality of pharmacokinetic models as well. It gives
additional information on the significance of each
parameter in the model and offers a powerful tool for
model verification. Because modelling is an on-going
process, the new models will improve and finally replace the
old ones when fresh and more information and technology
becomes available.

DISCUSSION

To evaluate the application of molecular modelling
techniques in environmental research, we summarized the
methods and divided them into four groups. Each group
contains methods which may be applied depending on the
knowledge available (Table 2). Presented division
corresponds to possible stages during the research process.
On every step, researchers have to consider different
solutions and evaluate them in context to the aim of the
study. As it can be observed, the investigators may employ
molecular modelling techniques practically on every stage
of research advancement. It is a great advantage of
molecular modelling methods, although they always stay in
close relation to experimental evidence.

From the range of applications reported here, it should
be clear that molecular modelling is a very versatile
technique and can be applied to many areas of molecular
studies. Unequivocal and pure model prediction in which no
direct experimental data are used is still an area that must
be approached cautiously. Difficulties and pitfalls
associated with modelling are still problems for unwary
users. Successful prediction methods require careful
development being a highly realistic and also still
computationally tractable. Due to the increasing trend for
creating prediction more valuable is desirable. It allows
numerous commotional methods to be applied on
a common set of problems and for them to be evaluated in
a common way. It is often difficult to evaluate the relative
merits of methods from different laboratories or variations
in methods from the same laboratory. The development of
parameters for molecular mechanic simulations requires
a high degree of skill and care. Knowledge of limitations of
a particular package is important for its effective use. There
are still cases in the literature where molecular modelling
methods have been applied to a system for which it was not
parameterised. In the case, the quality of results will then be
unpredictable. Modelling type simulations are utilised with
experimental determination method, where the
experimental data are incorporated into model. Simulation
schemes can incorporate data from a number of
experiments. As computer systems become more powerful
with time the utility of methods like modelling and
simulation can only increase. This may happen in two ways
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Table 2. Table illustrates the applicability of molecular modelling techniques in different research stages.

Structure of molecular target

Number of compounds

Known

Unknown
Low Create the database of known structures
and examine their differentiation
Apply the automatic synthesis approach
High Build a model of the active site — pharmacophore

Search databases for suitable

compounds, fulfil the pharmacophore

model assumption

Multidimensional QSAR (e.g. 3D-QSAR)

Find molecular fragments or ligands filling (grant)
into active site

Databases high-throughput screening
Compounds de novo building

Structure based pharmacophore

Static and dynamic models of ligand — molecular
target complex - molecular docking, molecular

dynamics

Pharmacokinetics (Toxicokinetics)

- firstly, existing types of simulations will be able to be run
for longer time periods, thus allowing better sampling of
conformational space and properties. Secondly, more
realistic (but more expensive) computation schemes will be
accessible in a reasonable time. The growth of structure
databases such as PDB will make the application of
methods much powerful in context to protein homology
building and molecular docking applicable to a wider range
of proteins. Molecular modelling methods have much to
contribute to our understanding of structural biology and
common knowledge. Although molecular modelling base on
the models some being simplification of real system, its
application may facilitate or even explain the potential
interacting mechanisms. Additionally, molecular modelling
is commonly used to describe and correlate the
experimental results with occurring phenomena. As it was
described previously, it is a noticeable fact that the
approach increases the speed and efficiency in the
discovering process. Moreover, collecting the pieces of
information from different experiments may help to
coordinate the information and make the experiments more
rational. The utility of such analyses is even more evident if
in silico precisions stay in close relation with traditional
experimental techniques. Molecular modelling approaches
are aimed to increase the speed and efficiency in the
research process. However, it is not (in some cases) an
independent source of knowledge (due to its dependence of
high quality data) it provides a more detailed map to the
goal.

CONCLUSIONS

Presented brief overview does not exhaust impressive range of
molecular modelling techniques, however evaluates current
and popular techniques considering their application.
Although there are some limitations and imperfections of
molecular modelling, the approach can be successfully applied

in situations when current knowledge is limited. In silico
modelling helps summarize current stage of research or
propose new developmental directions, becoming a valuable
partnership with experiments.
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